首页> 外文期刊>Journal of the mechanical behavior of biomedical materials >Material model of lung parenchyma based on living precision-cut lung slice testing.
【24h】

Material model of lung parenchyma based on living precision-cut lung slice testing.

机译:基于活体精确切割肺切片测试的肺实质的材料模型。

获取原文
获取原文并翻译 | 示例
       

摘要

We describe a novel constitutive model of lung parenchyma, which can be used for continuum mechanics based predictive simulations. To develop this model, we experimentally determined the nonlinear material behavior of rat lung parenchyma. This was achieved via uni-axial tension tests on living precision-cut rat lung slices. The resulting force-displacement curves were then used as inputs for an inverse analysis. The Levenberg-Marquardt algorithm was utilized to optimize the material parameters of combinations and recombinations of established strain-energy density functions (SEFs). Comparing the best-fits of the tested SEFs we found Wpar = 4.1 kPa(I1-3)2 + 20.7 kPa(I1 - 3)3 + 4.1 kPa(-2 ln J + J2 - 1) to be the optimal constitutive model. This SEF consists of three summands: the first can be interpreted as the contribution of the elastin fibers and the ground substance, the second as the contribution of the collagen fibers while the third controls the volumetric change. The presented approach will help to model the behavior of the pulmonary parenchyma and to quantify the strains and stresses during ventilation.
机译:我们描述了一种新的肺实质模型,可用于基于连续力学的预测模拟。为了开发该模型,我们通过实验确定了大鼠肺实质的非线性物质行为。这是通过在活体精确切割的大鼠肺切片上进行单轴拉伸测试来实现的。然后将所得的力-位移曲线用作反分析的输入。 Levenberg-Marquardt算法用于优化已建立的应变能密度函数(SEF)的组合和重组的材料参数。比较测试SEF的最佳拟合,我们发现Wpar = 4.1 kPa(I1-3)2 + 20.7 kPa(I1-3)3 + 4.1 kPa(-2 ln J + J2-1)是最佳本构模型。该SEF包含三个要求:第一个可以解释为弹性蛋白纤维和磨碎物质的贡献,第二个可以解释为胶原蛋白纤维的贡献,而第三个可以解释体积的变化。提出的方法将有助于对肺实质的行为进行建模,并量化通气过程中的应变和压力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号