首页> 外文期刊>Journal of the European Ceramic Society >Influence of grain size and microstructure on oxidation rate and mechanism in sintered titanium carbide under high temperature and low oxygen partial pressure
【24h】

Influence of grain size and microstructure on oxidation rate and mechanism in sintered titanium carbide under high temperature and low oxygen partial pressure

机译:高温低氧分压下晶粒尺寸和微观结构对烧结碳化钛氧化速率和机理的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Titanium carbide (TiC) pellets were prepared by Spark Plasma Sintering (SPS). Three different microstructures were synthesized with average grain sizes of 340 nm, 1.34 mu m and 25 mu m, respectively. Prior to oxidation treatment, TiC samples were implanted with xenon ions. This noble gas is used as a marker of the initial surface. Oxidation behavior was studied by Rutherford Backscattering Spectroscopy (RBS) and electronic microscopy through thermal treatment at 1000 degrees C for 10 h and under different low oxygen partial pressure (OPP). No detectable oxidation was observed after thermal treatment at OPP <= 2.10(-7) mbar whereas an oxide layer is formed at OPP = 2.10(-6) mbar. Thickness, composition and morphology of the oxide layer depend on the initial microstructure of the material. Numerous grain boundaries and the porosity (approximate to 10%) of the nano-grained material were responsible for the enhanced penetration of oxygen which resulted in the formation of a thick oxide layer. This layer is composed of external oxide and interfacial band sublayers. Ti4O7 was identified by XRD (X-Ray Diffraction) as being the main phase in the oxide layer concerning the nano-grained material whereas a relatively thick layer of TiO2 (rutile) is formed for larger grain microstructures. We proved the presence of carbon in the interfacial band as well as possible evacuation paths for CO/CO2 gas. There is less release of xenon from nano-grained material than larger grained materials during oxidation at OPP = 2.10(-6) mbar for 20 h attesting to the superior gas-tightness of the oxide layer in this case. A schematic model is then proposed to explain growth mechanisms and properties of the oxide layer. (C) 2016 Elsevier Ltd. All rights reserved.
机译:碳化钛(TiC)颗粒是通过火花等离子体烧结(SPS)制备的。合成了三种不同的微结构,其平均晶粒尺寸分别为340 nm,1.34μm和25μm。在氧化处理之前,将TiC样品注入氙离子。该稀有气体用作初始表面的标记。氧化行为通过卢瑟福背散射光谱(RBS)和电子显微镜通过在1000摄氏度,10小时和不同的低氧分压(OPP)下进行热处理来研究。在OPP <= 2.10(-7)mbar进行热处理后,未观察到氧化,而在OPP = 2.10(-6)mbar形成氧化层。氧化物层的厚度,组成和形态取决于材料的初始微观结构。纳米晶粒材料的许多晶界和孔隙率(约10%)是导致氧气渗透性增强的原因,这导致了厚氧化层的形成。该层由外部氧化物和界面带子层组成。通过XRD(X射线衍射)确定Ti4O7是涉及纳米晶粒材料的氧化物层中的主要相,而对于较大的晶粒微观结构而言,则形成了较厚的TiO2(金红石)层。我们证明了界面带中存在碳以及可能存在的CO / CO2气体疏散路径。在OPP = 2.10(-6)mbar的条件下进行氧化20小时,从纳米颗粒材料中释放出的氙气少于大型颗粒材料中的氙气释放,这证明了这种情况下氧化物层具有优异的气密性。然后提出了示意性模型来解释氧化物层的生长机理和性质。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号