首页> 外文期刊>Journal of Physical Organic Chemistry >The role of reaction energy and hydrogen bonding in the reaction path of enzymatic proton transfers
【24h】

The role of reaction energy and hydrogen bonding in the reaction path of enzymatic proton transfers

机译:反应能和氢键在酶促质子转移反应路径中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

The reaction path of the Interacting-State Model is used with the Transition-State Theory and the semiclassical correction for tunneling (ISM/scTST) to calculate proton transfer rates in rate-determining C-H bond breaking by enzymes such as mandelate racemase, triose-phosphate isomerase, methylamine dehydrogenase (MADH), and aromatic amine dehydrogenase (AADH), as well as of the analogous uncatalyzed proton transfers in aqueous solution. This method employs the reaction energy, the bond distances in reactants and products, and properties of the reactive bonds to calculate the proton transfer rates. The comparison between the molecular factors that control reactivity in solution and in the enzymes reveals the following salient features of enzyme catalysis: (1) the change from a bimolecular reaction in solution to an intramolecular reaction with negligible activation entropy in the enzyme; (2) energetic stabilization of the intermediates; and (3) extreme tunneling corrections when hydrogen bonding to a carbon atom is present in the reaction path. Copyright (C) 2008 John Wiley & Sons, Ltd.
机译:相互作用状态模型的反应路径与过渡状态理论和隧道的半经典校正(ISM / scTST)一起使用,以计算速率确定质子交换消旋酶,磷酸三磷酸酯等CH键断裂速率时的质子传递速率异构酶,甲胺脱氢酶(MADH)和芳族胺脱氢酶(AADH),以及在水溶液中类似的未催化质子转移。该方法利用反应能,反应物和产物中的键距以及反应性键的性质来计算质子转移速率。溶液和酶中控制反应性的分子因素之间的比较揭示了酶催化的以下显着特征:(1)从溶液中的双分子反应到具有可忽略不计的活化熵的分子内反应的变化; (2)中间体的能量稳定化; (3)当反应路径中存在与碳原子键合的氢时的极端隧穿校正。版权所有(C)2008 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号