...
首页> 外文期刊>Journal of molecular modeling >A theoretical study on the hydrogen-bonding interactions between flavonoids and ethanol/water
【24h】

A theoretical study on the hydrogen-bonding interactions between flavonoids and ethanol/water

机译:类黄酮与乙醇/水之间氢键相互作用的理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

Ethanol and water are the solvents most commonly used to extract flavonoids from propolis. Do hydrogen-bonding interactions exist between flavonoids and ethanol/ water? In this work, this question was addressed by using density functional theory (DFT) to provide information on the hydrogen-bonding interactions between flavonoids and ethanol/water. Chrysin and Galangin were chosen as the representative flavonoids. The investigated complexes included chrysin-H2O, chrysin-CH3CH2OH, galangin-H2O and galangin-CH3CH2OH dyads. Molecular geometries, hydrogen-bond binding energies, charges of monomers and dyads, and topological analysis were studied at the B3LYP/ M062X level of theory with the 6-31++G(d,p) basis set. The main conclusions were: (1) nine and ten optimized hydrogen-bond geometries were obtained for chrysin-H2O/CH3CH2OH and galangin-H2O/CH3CH2OH complexes, respectively. (2) The hydrogen atoms except aromatic H1 and H5 and all of the oxygen atoms can form hydrogen-bonds with H2O and CH3CH2OH. Ethanol and water form strong hydrogen-bonds with the hydroxyl, carbonyl and ether groups in chrysin/galangin and form weak hydrogen-bonds with aromatic hydrogen atoms. Except in structures labeled A and B, chrysin and galangin interact more strongly with H2O than CH3CH2OH. (3) When chrysin and galangin form hydrogen-bonds with H2O and CH3CH2OH, charge transfers from the hydrogen-bond acceptor (H2O and CH3CH2OH in structures A, B, G, H, I, J) to the hydrogen-bond donor (chrysin and galangin in structure A, B, G, H, I, J). The stronger hydrogen-bond makes the hydrogen-bond donor lose more charge (A> B> G> H> I> J). (4) Most of the hydrogen-bonds in chrysin/galangin-H2O/CH3CH2OH complexes may be considered as electrostatic dominant, while C -O2 center dot center dot center dot H in structures labeled E and C-O5 center dot center dot center dot H in structures labeled J are hydrogen-bonds combined of electrostatic and covalent characters. H9, H7, and O4 are the preferred hydrogen-bonding sites.
机译:乙醇和水是最常用的从蜂胶中提取黄酮类化合物的溶剂。类黄酮和乙醇/水之间是否存在氢键相互作用?在这项工作中,通过使用密度泛函理论(DFT)解决了这个问题,以提供有关类黄酮与乙醇/水之间的氢键相互作用的信息。选择了Chrysin和Galangin作为类黄酮。所研究的复合物包括chrysin-H2O,chrysin-CH3CH2OH,galangin-H2O和galangin-CH3CH2OH二聚体。在B3LYP / M062X理论水平上,使用6-31 ++ G(d,p)基集研究了分子几何结构,氢键结合能,单体和二元化合物的电荷以及拓扑分析。主要结论是:(1)分别获得了9种和10种优化的金黄色素-H2O / CH3CH2OH和高良姜精-H2O / CH3CH2OH配合物的氢键几何构型。 (2)除芳香族H 1和H 5之外的氢原子以及所有的氧原子均可以与H 2 O和CH 3 CH 2 OH形成氢键。乙醇和水与chrysin / galangin中的羟基,羰基和醚基形成强氢键,并与芳族氢原子形成弱氢键。除了标记为A和B的结构外,与CH3CH2OH相比,chrysin和galangin与H2O的相互作用更强。 (3)当菊花链和高良姜精与H2O和CH3CH2OH形成氢键时,电荷从氢键受体(结构A,B,G,H,I,J中的H2O和CH3CH2OH)转移到氢键供体(菊花链)以及结构A,B,G,H,I,J中的高良姜精)。较强的氢键使氢键供体损失更多的电荷(A> B> G> H> I> J)。 (4)可以认为菊花链/高良姜精-H2O / CH3CH2OH络合物中的大多数氢键为静电主键,而在标有E和C-O5中心点的中心结构中,C -O2中心点中心点中心点H为中心标记为J的结构中的H是氢键,具有静电和共价特征。 H 9,H 7和O 4是优选的氢键位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号