...
首页> 外文期刊>Journal of Micromechanics and Microengineering >A capillary pumping device utilizing super-hydrophobic silicon grass
【24h】

A capillary pumping device utilizing super-hydrophobic silicon grass

机译:利用超疏水硅草的毛细管泵送装置

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this study, we show that a compact silicon grass surface can be generated by utilizing the induced coupled plasma method with suitably chosen fabrication parameters. This super-hydrophobic structure suspends deionized water on top of the grass and keeps the contact angle at around 153°. The silicon grass is used to improve the driving efficiency of a capillary pumping micro-duct (without sidewalk), which is completely defined by a bottom hydrophilic stripe (adjacent to a Teflon substrate) and a fully top-covered hydrophobic Teflon surface which is coated on a glass substrate. The channel has a height of 3 μm and a width of 100 μm. In this work, the Teflon substrate is replaced with the silicon grass surface. When the fluid is flowing through the micro-duct on the stripe, the interface between the silicon grass and the hydrophilic stripe forms a stable air cushion barrier to the fluid, thus effectively reducing the frictional force. By changing only the interface with this replacement, we demonstrate that the average measured velocities of the new design show improvements of 21% and 17% in the driving efficiency over the original design for transporting deionized water and human blood, respectively. It is also shown that the measured data of the present design are closer to the values predicted by a theoretical analysis which relates the flow velocity to the contact angles, surface tension and fluid viscosity.
机译:在这项研究中,我们表明可以通过利用具有适当选择的制造参数的感应耦合等离子体方法来生成紧凑的硅草表面。这种超疏水结构将去离子水悬浮在草顶上,并使接触角保持在153°左右。硅草用于提高毛细泵送微管(无人行道)的驱动效率,该毛管完全由底部亲水条(与特富龙基材相邻)和顶部完全覆盖的疏水性特富龙表面所限定在玻璃基板上。通道的高度为3μm,宽度为100μm。在这项工作中,将特氟隆衬底替换为硅草表面。当流体流过条带上的微管时,硅草和亲水条带之间的界面对流体形成稳定的气垫屏障,从而有效地减小了摩擦力。通过仅通过更换接口来更改,我们证明了新设计的平均测得速度分别比原设计传输去离子水和人体血液的驱动效率提高了21%和17%。还表明,本设计的测量数据更接近于理论分析所预测的值,该理论分析将流速与接触角,表面张力和流体粘度相关联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号