首页> 外文期刊>Journal of Micromechanics and Microengineering >Transient response and stability of the AGC-PI closed-loop controlled MEMS vibratory gyroscopes
【24h】

Transient response and stability of the AGC-PI closed-loop controlled MEMS vibratory gyroscopes

机译:AGC-PI闭环控制MEMS振动陀螺仪的瞬态响应和稳定性

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents a detailed study on the transient response and stability of the automatic gain control (AGC) with a proportion-integral (PI) controller for a MEMS vibratory gyroscope, which constructs a closed-loop control system to make the gyroscope achieve a constant amplitude vibration at its resonant frequency. The nonlinear mathematical model for the control system is established by applying the averaging and linearization method, which is evaluated through numerical simulations. The stability and convergence characteristics of the whole loop are investigated by using the phase plane method and Routh-Hurwitz criterion. The analysis provides a quantitative methodology for selecting the system parameters to approach stability and an optimal transient response. The negative impact induced by drift of the resonant frequency and Q-factor is also discussed. Simulation results predicted by the model are shown to be in close agreement with the experimental results carried out on a doubly decoupled bulk micromachined gyroscope. By optimizing the control parameters, the measured rising time is less than 100 ms without obvious overshoot. The setting time of the whole loop is less than 200 ms with the relative fluctuation of velocity amplitude within approximately 16 ppm for an hour. The resulting overall performance of the gyroscope is tested under atmospheric pressure. The resonant frequencies and the Q-factor of the drive mode and sense mode are 2.986 kHz, 213 and 3.199 kHz, 233, respectively. The gyroscope achieves a scale factor of 27.6 mV/deg/s with nonlinearity less than 120 ppm in the full-scale range of 800° s~(-1). The threshold of sensitivity is measured to be about 0.005° s~(-1) with noise equivalent angular rate evaluated to be 0.001°/s/Hz~(1/2).
机译:本文对MEMS振动陀螺仪的比例增益(PI)控制器的自动增益控制(AGC)的瞬态响应和稳定性进行了详细研究,该控制器构造了一个闭环控制系统以使陀螺仪达到恒定共振频率下的振幅振动。应用平均和线性化方法建立了控制系统的非线性数学模型,并通过数值模拟对其进行了评估。利用相平面法和Ruth-Hurwitz准则研究了整个环路的稳定性和收敛性。该分析提供了一种定量方法,用于选择系统参数以逼近稳定性和最佳瞬态响应。还讨论了由谐振频率和Q因子漂移引起的负面影响。该模型预测的仿真结果表明与在双重解耦的整体微机械陀螺仪上进行的实验结果非常吻合。通过优化控制参数,测量的上升时间小于100 ms,而没有明显的过冲。整个环路的设置时间少于200毫秒,并且速度幅度的相对波动在一个小时内约为16 ppm之内。在大气压下测试陀螺仪的整体性能。驱动模式和感测模式的谐振频率和Q因子分别为2.986 kHz,213和3.199 kHz,233。陀螺仪在800°s〜(-1)的满量程范围内实现了27.6 mV / deg / s的比例因子,并且非线性度小于120 ppm。灵敏度的阈值经测量约为0.005°s〜(-1),而噪声等效角速率估计为0.001°/ s / Hz〜(1/2)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号