首页> 外文期刊>Journal of Neurocytology: A Journal of Cellular Neurobiology >Assembly, plasticity and selective vulnerability to disease of mouse neuromuscular junctions.
【24h】

Assembly, plasticity and selective vulnerability to disease of mouse neuromuscular junctions.

机译:装配,可塑性和对小鼠神经肌肉接头疾病的选择性脆弱性。

获取原文
获取原文并翻译 | 示例
           

摘要

Although physiological differences among neuromuscular junctions (NMJs) have long been known, NMJs have usually been considered as one type of synapse, restricting their potential value as model systems to investigate mechanisms controlling synapse assembly and plasticity. Here we discuss recent evidence that skeletal muscles in the mouse can be subdivided into two previously unrecognized subtypes, designated FaSyn and DeSyn muscles. These muscles differ in the pattern of neuromuscular synaptogenesis during embryonic development. Differences between classes are intrinsic to the muscles, and manifest in the absence of innervation or agrin. The distinct rates of synaptogenesis in the periphery may influence processes of circuit maturation through retrograde signals. While NMJs on FaSyn and DeSyn muscles exhibit a comparable anatomical organization in postnatal mice, treatments that challenge synaptic stability result in nerve sprouting, NMJ remodeling, and ectopic synaptogenesis selectively on DeSyn muscles. This anatomical plasticity of NMJs diminishes greatly between 2 and 6 months postnatally. NMJs lacking this plasticity are lost selectively and very early on in mouse models of motoneuron disease, suggesting that disease-associated motoneuron dysfunction may fail to initiate maintenance processes at "non-plastic" NMJs. Transgenic mice overexpressing growth-promoting proteins in motoneurons exhibit greatly enhanced stimulus-induced sprouting restricted to DeSyn muscles, supporting the notion that anatomical plasticity at the NMJ is primarily controlled by processes in the postsynaptic muscle. The discovery that entire muscles in the mouse differ substantially in the anatomical plasticity of their synapses establishes NMJs as a uniquely advantageous experimental system to investigate mechanisms controlling synaptic rearrangements at defined synapses in vivo.
机译:尽管长久以来就已经知道神经肌肉接头(NMJ)之间的生理差异,但NMJ通常被认为是一种突触,限制了它们作为研究控制突触装配和可塑性的模型系统的潜在价值。在这里,我们讨论了最近的证据,即小鼠的骨骼肌可细分为两个以前无法识别的亚型,分别称为FaSyn和DeSyn肌肉。这些肌肉在胚胎发育过程中神经肌肉突触形成的模式不同。类别之间的差异是肌肉固有的,并且在没有神经支配或凝集素的情况下表现出来。外周突触形成的不同速率可能会通过逆行信号影响电路成熟的过程。虽然FaSyn和DeSyn肌肉上的NMJ在产后小鼠中表现出可比的解剖组织,但是挑战突触稳定性的治疗会在DeSyn肌肉上选择性地产生神经萌芽,NMJ重塑和异位突触。在出生后2到6个月之间,NMJ的这种解剖可塑性大大降低。缺乏这种可塑性的NMJ在运动神经元疾病的小鼠模型中有选择地消失,并且很早就消失了,这表明与疾病相关的运动神经元功能障碍可能无法启动“非塑性” NMJ的维持过程。在运动神经元中过表达促进生长的蛋白的转基因小鼠表现出大大增强的刺激诱导的仅限于DeSyn肌肉的发芽,从而支持了NMJ的解剖可塑性主要受突触后肌肉过程控制的观点。小鼠整个肌肉在突触的解剖可塑性方面存在显着差异的发现将NMJ建立为一个独特的有利实验系统,以研究控制体内确定的突触的突触重排的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号