首页> 外文期刊>Journal of Neurochemistry: Offical Journal of the International Society for Neurochemistry >Preferential resistance of dopaminergic neurons to the toxicity of glutathione depletion is independent of cellular glutathione peroxidase and is mediated by tetrahydrobiopterin.
【24h】

Preferential resistance of dopaminergic neurons to the toxicity of glutathione depletion is independent of cellular glutathione peroxidase and is mediated by tetrahydrobiopterin.

机译:多巴胺能神经元对谷胱甘肽耗竭毒性的优先抗性独立于细胞谷胱甘肽过氧化物酶,并由四氢生物蝶呤介导。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Depletion of glutathione in the substantia nigra is one of the earliest changes observed in Parkinson's disease (PD) and could initiate dopaminergic neuronal degeneration. Nevertheless, experimental glutathione depletion does not result in preferential toxicity to dopaminergic neurons either in vivo or in vitro. Moreover, dopaminergic neurons in culture are preferentially resistant to the toxicity of glutathione depletion, possibly owing to differences in cellular glutathione peroxidase (GPx1) function. However, mesencephalic cultures from GPx1-knockout and wild-type mice were equally susceptible to the toxicity of glutathione depletion, indicating that glutathione also has GPx1-independent functions in neuronal survival. In addition, dopaminergic neurons were more resistant to the toxicity of both glutathione depletion and treatment with peroxides than nondopaminergic neurons regardless of their GPx1 status. To explain this enhanced antioxidant capacity, we hypothesized that tetrahydrobiopterin (BH(4)) may function as an antioxidant in dopaminergic neurons. In agreement, inhibition of BH(4) synthesis increased the susceptibility of dopaminergic neurons to the toxicity of glutathione depletion, whereas increasing BH(4) levels completely protected nondopaminergic neurons against it. Our results suggest that BH(4) functions as a complementary antioxidant to the glutathione/glutathione peroxidase system and that changes in BH(4) levels may contribute to the pathogenesis of PD.
机译:黑质中谷胱甘肽的消耗是帕金森氏病(PD)中观察到的最早变化之一,可能引起多巴胺能神经元变性。然而,实验性谷胱甘肽耗竭在体内或体外都不会对多巴胺能神经元产生优先毒性。此外,培养物中的多巴胺能神经元优先抵抗谷胱甘肽耗竭的毒性,这可能是由于细胞中的谷胱甘肽过氧化物酶(GPx1)功能不同所致。但是,来自GPx1基因敲除和野生型小鼠的中脑培养物同样容易受到谷胱甘肽耗竭毒性的影响,这表明谷胱甘肽在神经元存活中也具有不依赖GPx1的功能。此外,无论GPx1状态如何,多巴胺能神经元比非多巴胺能神经元对谷胱甘肽耗竭和过氧化物处理的毒性更具抵抗力。为了解释这种增强的抗氧化能力,我们假设四氢生物蝶呤(BH(4))可能在多巴胺能神经元中起抗氧化剂的作用。一致的是,对BH(4)合成的抑制作用增加了多巴胺能神经元对谷胱甘肽耗竭毒性的敏感性,而增加的BH(4)水平则完全保护了非多巴胺能神经元免受其影响。我们的结果表明,BH(4)可以作为谷胱甘肽/谷胱甘肽过氧化物酶系统的抗氧化剂,并且BH(4)水平的变化可能与PD的发病机理有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号