【24h】

Microcrystalline silicon growth in the presence of dopants: effect of high growth temperatures

机译:在掺杂剂存在下微晶硅的生长:高生长温度的影响

获取原文
获取原文并翻译 | 示例
           

摘要

High growth rate poly- and microcrystalline silicon materials such as those made by hot-wire chemical vapor deposition (HWCVD) require doped layers that are not only resistant to high temperatures, but also resistant to high atomic hydrogen fluxes. This has been achieved in our case by Layer-by-Layer (LbL) deposition at high temperatures. Layer-by-Layer deposition was achieved by alternating either boron (p-type) or phosphorous (n-type) doped amorphous silicon and hydrogen plasma treatments by very high frequency chemical vapor deposition (VHF PECVD). The experiments revealed the following observations. (1) An optimum thickness per deposition cycle (total thickness/deposition cycle) of 1.4 nm/cycle is needed for crystallization (irrespective of dopants and deposition temperature). We found that for continuous wave deposition (CW) increased boron doping leads the growth regime to amorphous nature, whereas at the same doping condition we obtain microcrystalline films by LbL deposition if the aforesaid thickness per cycle is followed. (2) The etching rate during the hydrogen treatment decreases monotonously at increasing substrate temperature. The observation that films grown at 400 degreesC (where etching is negligible) are microcrystalline, implies that etching does not play an important role in nucleation. (3) A minimum thickness of the first layer is needed for sustaining growth in the LbL process. From the above studies we propose a hydrogen mediated nucleation process, which is not affected by dopants at the growing surface as in the case of continuous growth. The doping efficiencies in our LbL deposited layers are orders of magnitude higher than those in CW deposition (for p layers a doping efficiency of 39% in case of LbL, compared to 1% for CW). The best high-temperature doped layers with a small thickness have properties as follows: LbL p-type muc-Si:H (T-s = 350 degreesC, 29 nm): activation energy = 0.11 eV and dark conductivity = 0.1 Omega(-1) cm(-1); LbL n-type muc-Si:H (T-s = 400 degreesC, 31 nm): activation energy = 0.056 eV and dark conductivity = 2.7 Omega(-1) cm(-1). A test cell using an HWCVD deposited pc-Si:H i-layer on top of the high temperature LbL muc-Si:H n-layer in an n-i-p cell configuration on a stainless steel substrate without a back reflector showed a high open circuit voltage of 0.65 V and a fill factor of 0.68, proving the high doping efficiency and crystallinity of the n-layer as well as its resistance against high-temperature conditions. (C) 2004 Elsevier B.V. All rights reserved.
机译:高生长速率的多晶硅和微晶硅材料(例如通过热线化学气相沉积(HWCVD)制造的材料)需要掺杂的层,这些层不仅要耐高温,而且要耐高原子氢通量。在我们的案例中,这是通过在高温下进行逐层沉积(LbL)来实现的。通过交替掺杂硼(p型)或磷(n型)非晶硅和氢等离子体,通过非常高频率的化学气相沉积(VHF PECVD),可以实现逐层沉积。实验揭示了以下观察结果。 (1)结晶所需的每个沉积循环的最佳厚度(总厚度/沉积循环)为1.4nm /循环(与掺杂剂和沉积温度无关)。我们发现,对于连续波沉积(CW),增加的硼掺杂会导致生长方式趋于非晶态,而在相同的掺杂条件下,如果遵循上述每个循环的厚度,我们将通过LbL沉积获得微晶膜。 (2)随着基板温度的升高,氢处理中的蚀刻速率单调降低。观察到在400摄氏度(可忽略不计的蚀刻)下生长的薄膜是微晶的,这表明蚀刻在成核中不发挥重要作用。 (3)为了维持LbL工艺的生长,需要第一层的最小厚度。通过以上研究,我们提出了氢介导的成核过程,该过程不受连续生长情况下生长表面掺杂剂的影响。我们的LbL沉积层中的掺杂效率比CW沉积中的掺杂效率高几个数量级(对于p层,LbL情况下的掺杂效率为39%,而CW为1%)。厚度小的最佳高温掺杂层具有以下特性:LbL p型muc-Si:H(Ts = 350摄氏度,29 nm):活化能= 0.11 eV和暗电导率= 0.1 Omega(-1)厘米(-1); LbL n型muc-Si:H(Ts = 400摄氏度,31 nm):活化能= 0.056 eV,暗电导率= 2.7 Omega(-1)cm(-1)。在没有背面反射器的不锈钢基板上的压区单元配置中,在高温LbL muc-Si:H n层顶部使用HWCVD沉积的pc-Si:H i层的测试单元显示出高的开路电压厚度为0.65 V,填充系数为0.68,证明了n层的高掺杂效率和结晶度,以及其对高温条件的抵抗力。 (C)2004 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号