首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Nanocluster seed-mediated synthesis of CuInS2 quantum dots, nanodisks, nanorods, and doped Zn-CuInGaS2 quantum dots
【24h】

Nanocluster seed-mediated synthesis of CuInS2 quantum dots, nanodisks, nanorods, and doped Zn-CuInGaS2 quantum dots

机译:纳米簇种子介导的CuInS2量子点,纳米盘,纳米棒和掺杂的Zn-CuInGaS2量子点的合成

获取原文
获取原文并翻译 | 示例
       

摘要

Recent work using seed-mediated quantum dot growth has shown that nanoparticle seeds are a useful method for providing nucleation centers in order to control the nanoparticle shape and composition. Here we present a facile nanocluster seed-mediated protocol to synthesize CuInS2 quantum dots (q-dots) and Zn and/or Ga doped CuInS2 (Zn-CuInGaS2) q-dots using (NH4)(2)S as a sulfur source. Due to high reactivity of (NH4)2S toward metal cations, we are able to isolate a CuInS2 nanocluster (< 2 nm with low crystallinity) intermediate at low temperatures (60 degrees C). By varying the conditions of a "heat-up" synthesis method, these nanoclusters can be grown into CuInS2 with different morphologies (q-dots, nanodisks, and nanorods) and different crystalline phases (chalcopyrite and wurtzite). Further, we can incorporate dopant Ga3+ and Zn2+ ions into the q-dots by introducing the dopant either during the nanocluster formation or during the crystal growth stage, resulting in CuInGaS2 and CuInZnS q-dots. Incorporation of both Ga and Zn increases the photoluminescence intensity compared to CuInS2; furthermore, the absorption spectra and photoluminescent emission peaks are shifted to shorter wavelengths. With this nanocluster method, we have also synthesized pentanary Zn-CuInGaS2 for the first time. Compared to quaternary CuInGaS2 and CuInZnS, we observe a larger blue shift in the absorption spectra when both Zn and Ga are present. The interesting optical properties of Zn-CuInGaS2 makes it an attractive material for photovoltaic devices and light emitting diodes. The ability to isolate the intermediate CuInS2 nanoclusters provides a strategy for synthesizing a wide variety of tailored quaternary and pentanary metal chalcogenides in the future.
机译:使用种子介导的量子点生长的最新工作表明,纳米颗粒种子是用于提供成核中心以控制纳米颗粒形状和组成的有用方法。在这里,我们提出了一种简便的纳米簇种子介导的协议,以使用(NH4)(2)S作为硫源来合成CuInS2量子点(q点)和Zn和/或Ga掺杂的CuInS2(Zn-CuInGaS2)q点。由于(NH4)2S对金属阳离子的高反应活性,我们能够在低温(60摄氏度)下分离出CuInS2纳米簇(<2 nm,低结晶度)中间体。通过改变“加热”合成方法的条件,这些纳米团簇可以生长成具有不同形态(q点,纳米盘和纳米棒)和不同结晶相(黄铜矿和纤锌矿)的CuInS2。此外,我们可以通过在纳米团簇形成期间或晶体生长阶段引入掺杂剂,将掺杂剂Ga3 +和Zn2 +离子掺入q点中,从而形成CuInGaS2和CuInZnS q点。与CuInS2相比,Ga和Zn的结合增加了光致发光强度。此外,吸收光谱和光致发光发射峰移动到较短的波长。利用这种纳米簇方法,我们还首次合成了五价锌-CuInGaS2。与四元CuInGaS2和CuInZnS相比,当同时存在Zn和Ga时,我们观察到吸收光谱中的蓝移较大。 Zn-CuInGaS2有趣的光学特性使其成为光伏器件和发光二极管的有吸引力的材料。分离中间CuInS2纳米团簇的能力为将来合成大量定制的季铵和季铵金属硫属元素化物提供了一种策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号