首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >The effect of a solid electrolyte interphase on the mechanism of operation of lithium-sulfur batteries
【24h】

The effect of a solid electrolyte interphase on the mechanism of operation of lithium-sulfur batteries

机译:固体电解质中间相对锂硫电池工作机理的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Composite sulfur-carbon electrodes were prepared by encapsulating sulfur into the micropores of highly disordered microporous carbon with micrometer-sized particles. The galvanostatic cycling performance of the obtained electrodes was studied in 0.5 M Li bis(fluorosulfonyl) imide (FSI) in methylpropyl pyrrolidinium (MPP) FSI ionic-liquid (IL) electrolyte solution. We demonstrated that the performance of Li-S cells is governed by the formation of a solid electrolyte interphase (SEI) during the initial discharge at potentials lower than 1.5 V vs. Li/Li+. Subsequent galvanostatic cycling is characterized by a one plateau voltage profile specific to the quasi-solid-state reaction of Li ions with sulfur encapsulated in the micropores under solvent deficient conditions. The stability of the SEI thus formed is critically important for the effective desolvation of Li ions participating in quasi-solid-state reactions. We proved that realization of the quasi-solid-state mechanism is controlled not by the porous structure of the carbon host but rather by the nature of the electrolyte solution composition and the discharge cut off voltage value. The cycling behavior of these cathodes is highly dependent on sulfur loading. The best performance at 30 degrees C can be achieved with electrodes in which the sulfur loading was 60% by weight, when sulfur filled micropores are not accessible for N-2 molecules according to gas adsorption isotherm data. A limited contact of the confined sulfur with the electrolyte solution results in the highest reversible capacity and initial coulombic efficiency. This insight into the mechanism provides a new approach to the development of new electrolyte solutions and additives for Li-S cells.
机译:复合硫碳电极是通过将硫封装到具有微米级颗粒的高度无序的微孔碳的微孔中而制得的。在甲基丙基吡咯烷鎓(MPP)FSI离子液体(IL)电解质溶液中的0.5 M Li双(氟磺酰基)酰亚胺(FSI)中研究了所得电极的恒电流循环性能。我们证明了Li-S电池的性能受初始放电期间在低于1.5 V vs. Li / Li +的电势下形成固体电解质中间相(SEI)的支配。随后的恒电流循环的特征在于,在溶剂不足的条件下,锂离子与微孔中封装的硫的准固态反应具有一个平稳的电压曲线。这样形成的SEI的稳定性对于参与准固态反应的锂离子的有效去溶剂化至关重要。我们证明了准固态机制的实现不是由碳主体的多孔结构控制的,而是由电解质溶液成分的性质和放电截止电压值控制的。这些阴极的循环行为高度依赖于硫负载。根据气体吸附等温线数据,当N-2分子无法接近充满硫的微孔时,用硫负载量为60%的电极可获得30℃时的最佳性能。受限硫与电解质溶液的有限接触导致最高的可逆容量和初始库伦效率。对这种机理的深入了解为开发用于Li-S电池的新型电解质溶液和添加剂提供了一种新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号