首页> 外文期刊>Journal of molecular catalysis, B. Enzymatic >Enzymes for energy. Structural computational analysis, substrate association and product dissociation from the thermophilic esterase of Alicyclobacillus acidocaldarius: Implications in biodiesel production
【24h】

Enzymes for energy. Structural computational analysis, substrate association and product dissociation from the thermophilic esterase of Alicyclobacillus acidocaldarius: Implications in biodiesel production

机译:能量酵素。酸热脂环酸嗜热酯酶的结构计算分析,底物缔合和产物解离:对生物柴油生产的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Enzymes, as natural catalysts, are prime players in the search for the new efficient environmentally friendly production of biofuels. The different permutations of the many variables, such as source, selectivity, stability and structure of substrates and enzyme, immobilization and/or life-time of the catalyst, temperature and time of the reaction and solvent constituency, polarity and quantity make the use of enzymes for this purpose a daunting task. An esterase is a unique family of enzymes that can either esterify a fatty acid in a non-polar solvent containing a stoichiometric amount of short-chain alcohol or hydrolyse an ester into the corresponding acid and alcohol. Even though tolerance of the esterase to such solvents increases the solubility of the substrates and assists in the recovery of product final product yield is controlled provided a specific amount of water is also present influencing the enzyme-substrate equilibrium and the lipid-water interface-an area that is occupied by the esterase. Knowing the composition of the solvent medium needed for esterase activity is complicated by knowledge of the structure of the binding pocket, substrate entry into the enzyme active channel, the flexibility of the enzyme itself, unwanted hydrolytic reactions and total changes in the thermodynamic footprint between substrate and enzyme. This article explores a computational structural analysis of an esterase investigating the substrate-enzyme binding site and uses simple simulations and molecular dynamics to address the mechanism(s) and pathways that products-fatty acid esters (biodiesel)-dissociate from the enzyme. Two simulations in hexanerMeOH (9:1) and water as well as hydrogen bond interactions of the substrate/product with the enzyme, RMSD and B-factor calculations and the presence of water molecules in enzyme active binding pocket dictate which entry or exit pathway is preferable.
机译:作为天然催化剂的酶是寻找新型高效环保生产生物燃料的主要参与者。许多变量的不同排列,例如来源,选择性,底物和酶的稳定性和结构,催化剂的固定化和/或寿命,反应的温度和时间以及溶剂的组成,极性和数量,都可以使用为此目的酶是一项艰巨的任务。酯酶是独特的酶家族,可以在含有化学计量的短链醇的非极性溶剂中酯化脂肪酸,或将酯水解为相应的酸和醇。即使酯酶对此类溶剂的耐受性增加了底物的溶解度,并有助于回收最终产物的产量,但也要控制一定量的水,这会影响酶-底物的平衡和脂质-水的界面-酯酶占据的区域。通过了解结合袋的结构,底物进入酶活性通道,酶本身的柔韧性,不需要的水解反应以及底物之间热力学足迹的总体变化,知道酯酶活性所需的溶剂介质的组成非常复杂。和酶。本文探讨了酯酶的计算结构分析,以研究底物-酶的结合位点,并使用简单的模拟和分子动力学来解决从脂肪酸中分离出脂肪酸酯(生物柴油)的机理和途径。在己烷中的两次模拟MeOH(9:1)和水以及底物/产物与酶的氢键相互作用,RMSD和B因子计算以及酶活性结合口袋中水分子的存在决定了哪个进入或退出途径是更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号