首页> 外文期刊>Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology >Highly efficient photocatalysis by BiFeO_3/α(γ)- Fe_2O_3 ferromagnetic nano p junctions formed by dopant-induced phase separation
【24h】

Highly efficient photocatalysis by BiFeO_3/α(γ)- Fe_2O_3 ferromagnetic nano p junctions formed by dopant-induced phase separation

机译:掺杂剂诱导的相分离形成的BiFeO_3 /α(γ)-Fe_2O_3铁磁性纳米p / n结的高效光催化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A series of Bi_(1-x) Ca _x FeO_3 (BCFO) nanoparticles (with x = 0.0, 0.03, 0.07, 0.10, 0.15, and 0.20) have been synthesized by sol-gel reaction. X-ray diffraction patterns establish the formation of hexagonal bismuth ferrite as the prominent phase, with a small contribution of the Bi_2Fe_4O_9 phase (as reported by others as well) which diminishes rapidly with the increase in Ca concentration. Interestingly, above a calcium dopant concentration of about 10 % peaks of Fe_2O_3 (both α and γ components) are observed with a concomitant enhancement of ferromagnetism. Small contribution of the Bi_6Ca_4O_(13) phase is also noted in these samples. This phase evolution is driven by dopant-induced strain energy and increasing oxygen vacancy concentration for local charge balance. Transmission electron microscopy (with elemental scanning) and M?ssbauer spectroscopy techniques bring out the evolution of nanoparticle morphology (and elemental distribution) and phase configuration, respectively. Measurements of photocatalytic activity (and photo-Fenton activity with H_2O _2) reveal that Ca doping at the Bi site in BFO enhances the activity significantly in the concentration regime where BFO/α(γ)-Fe _2O_3 phases coexist in the form of a nanocomposite. The enhancement can thus be attributed to the carrier transfer between BFO and α(γ)-Fe_2O_3 across nano p junctions leading to enhanced carrier lifetime. Importantly, the magnetization of the nanocomposite (about 16 emu gm~(-1) at x = 0.20) provides a convenient way to collect the photocatalyst with the help of an external magnet for reuse.
机译:通过溶胶-凝胶反应合成了一系列Bi_(1-x)Ca _x FeO_3(BCFO)纳米粒子(x = 0.0、0.03、0.07、0.10、0.15和0.20)。 X射线衍射图确定六角形铋铁氧体的形成为突出相,Bi_2Fe_4O_9相的贡献很小(也有报道),随Ca浓度的增加而迅速减小。有趣的是,在钙掺杂剂浓度之上,观察到Fe_2O_3(α和γ组分)的峰值约为10%,同时铁磁性增强。在这些样本中,Bi_6Ca_4O_(13)相的贡献也很小。该相演变是由掺杂剂诱导的应变能和增加的氧空位浓度以实现局部电荷平衡驱动的。透射电子显微镜(带元素扫描)和Msssbauer光谱技术分别带来了纳米颗粒形态(和元素分布)和相构型的演变。测量的光催化活性(和H_2O _2的光Fenton活性)表明,在BFO /α(γ)-Fe _2O_3相以纳米复合物形式共存的浓缩方案中,BFO中Bi部位的Ca掺杂显着增强了活性。 。因此,这种增强可以归因于BFO和α(γ)-Fe_2O_3之间跨纳米p / n结的载流子转移,从而提高了载流子寿命。重要的是,纳米复合材料的磁化强度(在x = 0.20时约为16 emu gm〜(-1))提供了一种方便的方法,可以借助外部磁体来收集光催化剂以进行再利用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号