...
首页> 外文期刊>Journal of microbiology and biotechnology >Production of Rapamycin in Streptomyces hygroscopicus from Glycerol-Based Media Optimized by Systemic Methodology~S
【24h】

Production of Rapamycin in Streptomyces hygroscopicus from Glycerol-Based Media Optimized by Systemic Methodology~S

机译:系统方法优化的基于甘油的培养基在吸水链霉菌中生产雷帕霉素的方法〜S

获取原文
获取原文并翻译 | 示例

摘要

Rapamycin, produced by the soil bacterium Streptomyces hygroscopicus, has the ability to suppress the immune system and is used as an antifungal, anti-inflammatory, antitumor, and immunosuppressive agent. In an attempt to increase the productivity of rapamycin, mutagenesis of wild-type Streptomyces hygroscopicus was performed using ultraviolet radiation, and the medium composition was optimized using glycerol (which is one of the cheapest starting substrates) by applying Plackett-Burman design and response surface methodology. Plackett-Burman design was used to analyze 14 medium constituents: M100 (maltodextrin), glycerol, soybean meal, soytone, yeast extract, (NH_4)_2SO_4, L-lysine, KH_2PO_4, K_2HPO_4, NaCl, FeSO_4.7H_2O, CaCO_3, 2-(N-morpholino) ethanesulfonic acid, and the initial pH level. Glycerol, soytone, yeast extract, and CaCO_3were analyzed to evaluate their effect on rapamycin production. The individual and interaction effects of the four selected variables were determined by Box-Behnken design, suggesting CaCO_3, soytone, and yeast extract have negative effects, but glycerol was a positive factor to determine rapamycin productivity. Medium optimization using statistical design resulted in a 45% (220.7 ± 5.7 mg/1) increase in rapamycin production for the Streptomyces hygroscopicus mutant, compared with the unoptimized production medium (151.9 ± 22.6 mg/1), and nearly 588% compared.with wild- type Streptomyces hygroscopicus (37.5 ± 2.8 mg/1). The change in pH showed that CaCO_3 is a critical and negative factor for rapamycin production.
机译:由土壤细菌吸水链霉菌产生的雷帕霉素具有抑制免疫系统的能力,并被用作抗真菌,抗炎,抗肿瘤和免疫抑制剂。为了提高雷帕霉素的生产率,使用紫外线辐射诱变了野生型吸水链霉菌,并通过应用Plackett-Burman设计和响应表面使用甘油(最便宜的起始底物之一)对培养基组成进行了优化。方法。使用Plackett-Burman设计分析14种培养基成分:M100(麦芽糊精),甘油,豆粕,大豆蛋白,酵母提取物,(NH_4)_2SO_4,L-赖氨酸,KH_2PO_4,K_2HPO_4,NaCl,FeSO_4.7H_2O,CaCO_3、2- (N-吗啉代)乙磺酸和初始pH值。分析甘油,大豆,酵母提取物和CaCO_3,以评估它们对雷帕霉素生产的影响。通过Box-Behnken设计确定了四个选定变量的个体和相互作用影响,表明CaCO_3,大豆和酵母提取物具有负面影响,但甘油是确定雷帕霉素生产率的积极因素。与未优化的生产培养基(151.9±22.6 mg / 1)相比,使用统计设计进行培养基优化可使吸水链霉菌突变体的雷帕霉素产量提高45%(220.7±5.7 mg / 1)。野生型吸水链霉菌(37.5±2.8 mg / 1)。 pH的变化表明CaCO_3是雷帕霉素生产的关键和负面因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号