...
首页> 外文期刊>Journal of Macromolecular Science. Physics >In Situ Synthesis and Characterization of Polypyrrole/Graphene Conductive Nanocomposites via Electrochemical Polymerization and Chemical Reduction
【24h】

In Situ Synthesis and Characterization of Polypyrrole/Graphene Conductive Nanocomposites via Electrochemical Polymerization and Chemical Reduction

机译:电化学聚合和化学还原原位合成聚吡咯/石墨烯导电纳米复合材料及其表征

获取原文
获取原文并翻译 | 示例

摘要

Polypyrrole/graphene sheets (PPy/GNs) nanocomposite electrodes were in- situ synthesized via electrochemical polymerization and chemical reduction from pyrrole (Py) and graphene oxide (GO). The surface morphologies of the nanocomposites were observed by scanning electron microscopy (SEM). The SEM results showed graphene sheets (GNs) scattered on the surface of the polypyrrole (PPy), and the morphologies of PPy/GNs nanocomposites manufactured by pulse current (PC-PPy/GNs) or direct current (DC-PPy/GNs) were smoother than that of PC-PPy. The electrochemical capacitance properties of the nanocomposite films were measured by cyclic voltammetry (CV), galvanostatic charge and discharge (GC), and electrochemical impedance spectroscopy (EIS) techniques in 3 mol.L~(-1) KCl aqueous solutions. The results indicated that the specific capacitance of the DC-PPy/GNs nanocomposite was 13.5% higher than that of a PC-PPy electrode. Comparison of the electrochemical performance of the nanocomposites indicated that the PC-PPy/GNs nanocomposite had higher specific capacitance and better charging/discharging capability than that of the DC-PPy/GNs nanocomposite. The specific capacitance of the PC-PPy/GNs nanocomposite could reach to 280 F.g~(-1) at a scanning rate of 100 mV.s~(-1).
机译:通过吡咯(Py)和氧化石墨烯(GO)的电化学聚合和化学还原原位合成聚吡咯/石墨烯片(PPy / GNs)纳米复合电极。通过扫描电子显微镜(SEM)观察纳米复合材料的表面形态。 SEM结果表明,石墨烯片(GNs)分散在聚吡咯(PPy)的表面上,并且通过脉冲电流(PC-PPy / GNs)或直流电(DC-PPy / GNs)制备的PPy / GNs纳米复合材料的形态为比PC-PPy光滑。通过循环伏安法(CV),恒电流充放电(GC)和电化学阻抗谱(EIS)技术在3 mol.L〜(-1)KCl水溶液中测量纳米复合膜的电化学电容性能。结果表明,DC-PPy / GNs纳米复合材料的比电容比PC-PPy电极高13.5%。纳米复合材料电化学性能的比较表明,PC-PPy / GNs纳米复合材料比DC-PPy / GNs纳米复合材料具有更高的比电容和更好的充电/放电能力。 PC-PPy / GNs纳米复合材料的比电容在100 mV.s〜(-1)的扫描速率下可以达到280 F.g〜(-1)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号