...
首页> 外文期刊>Journal of Materials Science >THEORETICAL AND EXPERIMENTAL CONSIDERATIONS ON THE THERMAL SHOCK RESISTANCE OF SINTERED GLASSES AND CERAMICS USING MODELLED MICROSTRUCTURE-PROPERTY CORRELATIONS
【24h】

THEORETICAL AND EXPERIMENTAL CONSIDERATIONS ON THE THERMAL SHOCK RESISTANCE OF SINTERED GLASSES AND CERAMICS USING MODELLED MICROSTRUCTURE-PROPERTY CORRELATIONS

机译:建模玻璃-性能相关性对烧结玻璃和陶瓷热震阻力的理论和实验考虑

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The thermal shock resistance of brittle materials such as glass and ceramics is one of their weaknesses. Pores and other incorporated second phases in these materials alter these properties which are decisive for thermal shock behaviour, and may therefore increase this behaviour in a precalculable manner. It has been theoretically demonstrated when and why porosity leads to an improvement in thermal shock resistance. The thermal shock resistance for porous borosilicate sintered glass and porous eutectic calcium titanate ceramic have been calculated and compared to experimental values. The results confirm that low porosities lead to an improvement in thermal shock resistance, that the thermal shock resistance has a maximum at a certain porosity, and that above certain porosities, the presence of pores deteriorates the thermal shock resistance. If porous materials are considered as a special case of composite materials, then relations valid for porous materials can be transferred to composite materials and vice versa (''composite concept''). This has been investigated using the examples of borosilicate sintered glass with incorporated antimony particles and eutectic calcium titanate ceramic with incorporated paladium particles. In the case of the glass-antimony composite material, improvements in thermal shock resistance of about 15% with 10 vol % antimony incorporation, were calculated and confirmed experimentally, while for calcium titanate-palladium composite materials, a 15% improvement in thermal shock resistance was already achieved with about 5 vol % metallic phase. [References: 43]
机译:诸如玻璃和陶瓷之类的脆性材料的耐热冲击性是它们的弱点之一。这些材料中的毛孔和其他掺入的第二相改变了这些性质,这些性质对于热冲击行为起决定性作用,因此可以以可预先计算的方式增加这种行为。理论上已经证明了何时以及为什么孔隙率导致耐热冲击性的提高。计算了多孔硼硅酸盐烧结玻璃和多孔共晶钛酸钙陶瓷的耐热冲击性,并将其与实验值进行了比较。结果证实,低孔隙率导致耐热冲击性的提高,耐热冲击性在一定孔隙率下具有最大值,并且在一定孔隙率之上,孔的存在使耐热冲击性劣化。如果将多孔材料视为复合材料的特例,则对多孔材料有效的关系可以转换为复合材料,反之亦然(“复合概念”)。已经使用掺有锑颗粒的硼硅酸盐烧结玻璃和掺有钯颗粒的低共熔钛酸钙陶瓷的例子对此进行了研究。对于玻璃-锑复合材料,通过掺入10体积%的锑,可以计算出并经实验证实其耐热冲击性提高了约15%,而钛酸钙-钯复合材料的耐热冲击性提高了15%。已经用约5%(体积)的金属相实现了。 [参考:43]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号