首页> 外文期刊>Journal of Korean Institute of Metal and Materials >Development of a Fatigue Life Extension Method by Dispersing Micro-sized Matensite Particles in Austenitic Stainless Steel - (I) Cyclic Plastic Deformation Behaviour
【24h】

Development of a Fatigue Life Extension Method by Dispersing Micro-sized Matensite Particles in Austenitic Stainless Steel - (I) Cyclic Plastic Deformation Behaviour

机译:通过在奥氏体不锈钢中分散微细马氏体颗粒来延长疲劳寿命的方法的发展-(I)循环塑性变形行为

获取原文
获取原文并翻译 | 示例
           

摘要

A new method for fatigue life extension has been proposed inthis study. To confirm the effectiveness of the proposed method, an austeniticstainless(SUS304) steel(pre-strain: about 2percent) was prepared. It wasshown from transmission electron microscopy (TEM) observation that micro-sized #alpha# martensite particles (0.02~0.1 #mu#m in diameter) weredispersed in the 5U5304 steel by cooling at -780C. No decrease in ductilitywas observed in tensile tests for the material with dispersed micro-sizedmartensite particles as compared to the as-received material. After tension-compression loading, dislocation structure and surface microstructureobservations were carried out using a TEM and a laser microscope,respectively. It was found that the re-arrangement of dislocations and theformation of large #alpha# martensite, which may cause fatigue crackinitiation, were suppressed in the material with dispersed micro-sized #alpha#martensite particles as compared to the as-received material. Fatigue life ofthe material with dispersed micro-sized #alpha# martensite particles did notincrease in a low cycle regime( < 10~4 cycles) as compared to the as-receivedmaterial. However, in a high cycle regime(>10~4 cycles), the fatigue life of thematerial with dispersed micro-sized #alpha# martensite particles was muchlonger than that of the as-received material.
机译:本研究提出了一种延长疲劳寿命的新方法。为了确认所提出方法的有效性,制备了一种奥氏体不锈钢(SUS304)钢(预应变:约2%)。通过透射电子显微镜(TEM)观察表明,通过在-780℃冷却,在5U5304钢中分散了微米尺寸的#α#马氏体颗粒(直径为0.02〜0.1#μ#m)。与接受的材料相比,在拉伸测试中未观察到具有分散的微米级马氏体颗粒的材料的延展性降低。拉伸压缩加载后,分别使用TEM和激光显微镜进行位错结构和表面显微结构的观察。发现与分散的材料相比,在具有分散的微米尺寸的α-马氏体颗粒的材料中,位错的重新排列和大的α-α马氏体的形成被抑制,这可能引起疲劳裂纹的开始。与原样相比,分散有微细#α#马氏体颗粒的材料的疲劳寿命在低循环状态(<10〜4个循环)下不会增加。然而,在高循环状态下(> 10〜4个循环),具有分散的微细#α#马氏体颗粒的材料的疲劳寿命要比原样的材料长得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号