首页> 外文学位 >Characterization of the fatigue failure mechanisms in austenitic and high nitrogen austenitic stainless steels.
【24h】

Characterization of the fatigue failure mechanisms in austenitic and high nitrogen austenitic stainless steels.

机译:奥氏体和高氮奥氏体不锈钢的疲劳破坏机理的表征。

获取原文
获取原文并翻译 | 示例

摘要

The aim of this study was to compare the properties of an implant grade 21Cr-23Mn-1N nitrogen-stabilized stainless (HNS) steel, to 316L and 22Cr-13Ni-5Mn stainless steels with a long history of implant use. The HNS steel showed excellent tensile, corrosion, and corrosion fatigue properties. However, the fracture surfaces of the notched tensile, notched stress corrosion cracking (SCC), smooth corrosion fatigue, and notched corrosion fatigue samples in the HNS steel showed a mixed-mode fracture consisting of areas of brittle facets intermingled with typical ductile features. Mixed-mode fractures were not exhibited in the other two nickel-stabilized stainless steel alloys. Since a substantial number of implant failures occur due to fatigue, the differences shown in fatigue fracture morphology for the HNS steel were of particular interest. It was hypothesized that the fatigue crack initiation and/or propagation mechanisms may be different for the HNS steel, and lead to the unusual fracture morphologies shown for the austenitic material.;The current research set out to test this hypothesis, and compare the fatigue crack initiation and propagation mechanisms of 21Cr-23Mn-1N and 316L cold-worked implant grade steels. Electron backscattered diffraction (EBSD) techniques were used to analyze representative areas of the microstructure on the free surface of fatigue samples. Both low-cycle and high-cycle fatigue loading conditions were evaluated over a series of fatigue intervals for each alloy. Atomic Force Microscopy (AFM) was also employed in order to determine the surface topography on the nanometer scale associated with representative surface deformation features. In addition the fracture surfaces of selected fatigue samples were examined using scanning electron microscopy (SEM) failure analysis techniques. The EBSD crack initiation and propagation data were associated with fracture morphology features shown in the SEM analysis.;Results from the EBSD analysis revealed former annealing twin boundaries to be a strongly preferred location for fatigue crack initiation in the 21Cr-23Mn-1N HNS alloy. Crack propagation was shown to typically follow a transcrystalline direction. Analysis of selected extended fatigue cracks suggested a mechanism involving preferential initiation along former annealing twin and grain boundaries followed by transcrystalline crack propagation to interconnect the previously initiated cracks. SEM failure analysis of the HNS alloy showed a large number of facets in the crack initiation regions of the fatigue fractures. The large number of brittle facets in the initiation region of the fatigue fracture surface agrees well with the preferential former annealing twin boundary crack initiation location shown in the EBSD analysis.;In Contrast, EBSD analysis of the 316L alloy showed transgranular slip markings along {111} planes to be the strongly preferred location for fatigue crack initiation. Crack propagation was also shown to typically follow a transcrystalline direction in this alloy. Analysis of selected extended fatigue cracks suggested a mechanism of preferential initiation along slip markings followed by transcrystalline crack propagation to interconnect the previously initiated cracks. SEM failure analysis of the 316L alloy showed relatively few facets, which also supported the EBSD results showing a preference for transgranular slip marking crack initiation.;AFM analysis revealed small extrusions due to dislocation pile-up along slip markings shown on the fatigue sample free surfaces of both alloys. The reduced heights of the extrusions compared to those shown previous studies on annealed alloys, was attributed to the degree of cold-working already present in the material prior to fatigue testing.;In conclusion, EBSD analysis revealed the preferential location of fatigue crack initiation for the two alloys to be very different. These differences in fatigue crack initiation locations explain the differences shown in fracture morphologies in the two alloy systems. Also the addition of EBSD and AFM analyses techniques to the more traditional SEM failure analysis was shown to provide a more complete understanding of the fatigue failures encountered in these two alloy systems. (Abstract shortened by UMI.)
机译:这项研究的目的是比较植入物历史悠久的植入物等级21Cr-23Mn-1N氮稳定不锈钢(HNS)与316L和22Cr-13Ni-5Mn不锈钢的性能。 HNS钢显示出优异的拉伸,腐蚀和腐蚀疲劳性能。但是,HNS钢中的缺口拉伸,缺口应力腐蚀裂纹(SCC),光滑腐蚀疲劳和缺口腐蚀疲劳样品的断裂表面显示出混合模式断裂,该断裂由脆性小面与典型延性特征混合的区域组成。在其他两种镍稳定的不锈钢合金中未出现混合模式的断裂。由于大量的植入物失效是由于疲劳引起的,因此特别关注HNS钢的疲劳断裂形貌差异。假设HNS钢的疲劳裂纹萌生和/或传播机制可能不同,并导致奥氏体材料显示出不同寻常的断裂形态。;当前的研究旨在检验该假设,并比较疲劳裂纹21Cr-23Mn-1N和316L冷作植入级钢的初始和传播机理。电子背散射衍射(EBSD)技术用于分析疲劳样品自由表面上的微观结构的代表性区域。在每种合金的一系列疲劳间隔内,评估了低循环和高循环疲劳载荷条件。为了确定与代表性表面变形特征相关的纳米尺度的表面形貌,还使用了原子力显微镜(AFM)。此外,使用扫描电子显微镜(SEM)失效分析技术检查了选定疲劳样品的断裂表面。 EBSD裂纹的萌生和扩展数据与SEM分析中显示的断裂形态特征有关。EBSD分析的结果表明,以前的退火孪晶边界是21Cr-23Mn-1N HNS合金中疲劳裂纹萌生的强烈首选位置。裂纹扩展通常遵循跨晶方向。对选定的扩展疲劳裂纹的分析提出了一种机制,该机制涉及沿先前的退火孪晶和晶界优先引发,然后进行跨晶裂纹扩展以互连先前引发的裂纹。 HNS合金的SEM失效分析表明,在疲劳断裂的裂纹萌生区域中存在大量刻面。疲劳断裂表面起始区域中的大量脆性面与EBSD分析中显示的优先退火前双晶界裂纹起始位置相吻合;相反,316L合金的EBSD分析显示沿{111 }平面是引发疲劳裂纹的首选位置。还表明裂纹扩展通常在该合金中遵循跨晶方向。对选定的扩展疲劳裂纹的分析表明,沿滑动标记优先引发的机制,然后是跨晶裂纹的传播,以互连先前引发的裂纹。 316L合金的SEM失效分析显示面相对较少,这也支持EBSD结果,表明偏向于沿晶滑移痕迹产生裂纹。; AFM分析显示,由于沿位错沿疲劳痕迹自由表面上显示的滑移痕迹堆积而导致少量挤压两种合金。与先前对退火合金的研究相比,挤压件高度的降低是由于疲劳测试之前材料中已经存在的冷加工程度所致。总之,EBSD分析揭示了疲劳裂纹萌生的优先位置两种合金有很大的不同。疲劳裂纹萌生位置的这些差异解释了两种合金系统中断裂形态所显示的差异。此外,还显示出将EBSD和AFM分析技术添加到更传统的SEM失效分析中可以更全面地了解这两种合金系统中遇到的疲劳失效。 (摘要由UMI缩短。)

著录项

  • 作者

    Roach, Michael David.;

  • 作者单位

    The University of Mississippi Medical Center.;

  • 授予单位 The University of Mississippi Medical Center.;
  • 学科 Engineering Biomedical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:45:22

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号