首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Shear stresses on megathrusts: Implications for mountain building behind subduction zones
【24h】

Shear stresses on megathrusts: Implications for mountain building behind subduction zones

机译:巨大推力上的剪应力:对俯冲带后方山体的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Shear stresses τ on a subduction megathrust play an important role in determining the forces available for mountain building adjacent to a subduction zone. In this study, the temperatures and shear stresses on megathrusts in 11 subduction zones around the Pacific rim (Hikurangi, Tonga, Izu-Ogasawara, western Nankai, northeastern Japan, Aleutians, western Alaska, Cascadia, northern Chile, southern Chile) and SE Asia (northern Sumatra) have been determined. The main constraint is that vertical normal stresses beneath the highlands behind the subduction zone are nearly equal to horizontal normal stresses, in the plane of a trench- or arc-normal section. For a typical brittle and ductile megathrust rheology, frictional shear stress τ = μρgz, for depth z, and ductile shear stress τ = A exp (B/RT) at temperature T, where μ, A, B are rheological parameters treated as constants. Rheological constants common to all the megathrusts (μcrust, μmantle, B) are determined by simultaneously solving for the force balance in the overlying wedge and megathrust thermal structure, using a simplex minimization algorithm, taking account of the induced mantle corner flow at depth (65 ± 15 km (2σ)) and constant radiogenic heating (0.65 ± 0.3 μW m~-3 (2σ)) throughout the crust. The A constants are solved individually for each subduction zone, assuming that the maximum depth of interplate slip earthquakes marks the brittle-ductile transition. The best fit solution shows two groupings of megathrusts, with most subduction zones having a low mean shear stress in the range 7–15 MPa (μcrust = 0.032 ± 0.006, μmantle = 0.019 ± 0.004) and unable to support elevations >2.5 km. For a typical frictional sliding coefficient ~0.5, the low effective coefficients of friction suggest high pore fluid pressures at ~95% lithostatic pressure. Tonga and northern Chile require higher shear stresses with μcrust = 0.095 ± 0.024, μmantle = 0.026 ± 0.007, suggesting slightly lower pore fluid pressures, at ~81% lithostatic. Ductile shear in the crust is poorly resolved but in the mantle appears to show a strong power law dependency, with B = 36 ± 18 kJ mol~-1. Amantle values are sensitive to the precise value of B but are in the range 1–20 kPa. The power law exponent n for mantle flow is poorly constrained but is likely to be large (n > 4). The brittle-ductile transition in the crust occurs at temperatures in the range 370°C–512°C, usually close to the base of the crust and in the mantle at much lower temperatures (180°C–300°C), possibly reflecting a marked change in pore fluid pressure or quasi ductile and subfrictional properties. In subduction zones where the subducted slab is older than 50 Ma, a significant proportion of the integrated shear force on the megathrust is taken up where it cuts the mantle and temperatures are ≤300°C. In much younger subduction zones, the stress transmission is confined mainly to the crust. The shear stresses, particularly in the crust, may be kept low by some sort of lubricant such as abundant water-rich trench fill, which lowers the frictional sliding coefficient or effective viscosity and/or raises pore fluid pressure. The unusual high stress subduction zone in northern Chile lacks significant trench fill and may be poorly lubricated, with a mean shear stress ~37 MPa required to support elevations >4 km in the high Andes. However, where the crust is thin in sediment-starved and poorly lubricated subduction zones, such as Tonga, the mean shear stress will still be low. Sediment may lubricate megathrusts accommodating underthrusting of continental crust, such as in the Himalayas or eastern central Andes, which have a low mean shear stress ~15 MPa.
机译:俯冲巨推力上的剪应力τ在确定与俯冲带相邻的山区建筑可用的力方面起着重要作用。在这项研究中,在太平洋边缘(Hikurangi,汤加,伊豆-小ara原,南海西部,日本东北部,阿留申群岛,阿拉斯加西部,卡斯卡迪亚,智利北部,智利南部)的11个俯冲带中的巨型俯冲带的温度和切应力(苏门答腊北部)已经确定。主要约束条件是在俯冲或弧形法线截面的平面中,俯冲带后高地下方的垂直法向应力几乎等于水平法向应力。对于典型的脆性和延性大推力流变,对于温度z,摩擦切应力τ=μρgz,对于深度z,延性切应力τ= A exp(B / RT),其中μ,A,B是作为常数的流变参数。考虑到在深处引起的地幔转角流动,使用单纯形最小化算法,通过同时求解上覆楔形和超大推力热力结构中的力平衡,确定所有超大推力(μcrust,μmantle,B)共有的流变常数。整个地壳内均保持±15 km(2σ))和恒定的放射致热(0.65±0.3μWm〜-3(2σ))。假设板间滑动地震的最大深度标志着脆性-延性转变,则对每个俯冲带分别求解A常数。最佳拟合解决方案显示两组大推力,大多数俯冲带的平均剪切应力在7–15 MPa范围内(μ地壳= 0.032±0.006,μ地幔= 0.019±0.004),并且不能支持大于2.5 km的海拔。对于典型的摩擦滑动系数〜0.5,低有效摩擦系数表明在岩石静压〜95%时孔隙流体压力较高。汤加和智利北部需要较高的剪切应力,其中地壳= 0.095±0.024,地幔= 0.026±0.007,表明岩石静压为〜81%时,孔隙流体压力略低。地壳中的韧性剪切很难解决,但在地幔中似乎表现出很强的幂律依赖性,其B = 36±18 kJ mol〜-1。 Amantle值对B的精确值敏感,但范围为1–20 kPa。地幔流动的幂律指数n受约束较弱,但可能很大(n> 4)。地壳中的脆性-韧性转变发生在370°C–512°C的温度范围内,通常接近地壳底部,而地幔中的温度则低得多(180°C–300°C),这可能反映了孔隙流体压力或准延性和亚摩擦特性发生了显着变化。在俯冲板片年龄大于50 Ma的俯冲带中,大推力上的整体剪切力的很大一部分被吸收了,在该处冲切地幔,温度≤300°C。在更年轻的俯冲带中,应力传递主要局限于地壳。可以通过某种润滑剂(例如丰富的富水沟槽填充物)将剪切应力(尤其是在地壳中)保持在较低的水平,从而降低摩擦滑动系数或有效粘度和/或提高孔隙流体压力。智利北部不寻常的高应力俯冲带缺乏明显的沟槽填充,可能润滑不良,为支持安第斯山脉高海拔4 km以上的高地,平均剪切应力约为37 MPa。但是,如果在沉积物匮乏和润滑不良的俯冲带中地壳较薄,例如汤加,平均剪切应力仍将较低。沉积物可能会润滑大地壳,以适应大陆地壳的下冲作用,例如在喜马拉雅山或安第斯中部东部地区,这些地壳的平均切应力较低,约为15 MPa。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号