...
首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >Discrepancies between formaldehyde measurements and methane oxidation model predictions in the Antarctic troposphere: An assessment of other possible formaldehyde sources
【24h】

Discrepancies between formaldehyde measurements and methane oxidation model predictions in the Antarctic troposphere: An assessment of other possible formaldehyde sources

机译:南极对流层中甲醛测量值与甲烷氧化模型预测值之间的差异:对其他可能甲醛源的评估

获取原文
获取原文并翻译 | 示例
           

摘要

Formaldehyde (HCHO) is a key intermediate in the photooxidation of methane by hydroxyl radicals. Through its photolysis, it is also a source for free radicals in the troposphere. Owing to these reactions, HCHO influences the oxidation capacity of the atmosphere and is a suitable species to test our current understanding of atmospheric oxidation pathways. Especially in polar regions, discrepancies between measurements and model calculations exist. Though recent investigations in the Arctic suggest that HCHO emissions from the snow surface might act as the missing source, the question remains unresolved for the Antarctic. We compare year-round HCHO measurements in Antarctica with model results from a simple photochemical box model. The observed ambient HCHO mixing ratios cannot be explained by methane photooxidation alone. Inclusion of HCHO emissions from the snow surface makes the model results and measurements consistent, but significantly higher emissions than those derived in the Arctic are needed to explain the observed HCHO mixing ratios. We discuss and model other possible sources such as oxidation of dimethylsulfide (DMS), isoprene, ethene, propene, and the effect of halogens, that may be responsible for the enhanced HCHO mixing ratios in the marine Antarctic troposphere. We find that, for the largest HCHO mixing ratio measured, all potential gas-phase HCHO precursors (including methane) are likely to generate only 20–40% of the required HCHO. If the remaining HCHO is produced by a flux from the snow, the flux required is 1.9–2.5 × 1013 molecules m?2 s?1 if the boundary layer height is 40–50 m.
机译:甲醛(HCHO)是甲烷被羟基自由基光氧化的关键中间体。通过其光解,它也是对流层中自由基的来源。由于这些反应,HCHO影响了大气的氧化能力,是测试我们目前对大气氧化途径的了解的合适物种。特别是在极地地区,存在测量和模型计算之间的差异。尽管最近在北极进行的调查表明,雪表面的HCHO排放可能是缺少的来源,但南极仍未解决该问题。我们将南极洲全年的HCHO测量结果与来自简单光化学盒模型的模型结果进行比较。所观察到的环境HCHO混合比不能仅通过甲烷光氧化来解释。包括来自雪面的HCHO排放使模型结果和测量结果保持一致,但是要解释所观察到的HCHO混合比,需要比北极地区的排放高得多的排放。我们讨论并建模了其他可能的来源,例如二甲基硫醚(DMS)的氧化,异戊二烯,乙烯,丙烯和卤素的影响,这可能是海洋南极对流层中HCHO混合比提高的原因。我们发现,对于测得的最大HCHO混合比,所有潜在的气相HCHO前体(包括甲烷)可能仅产生所需HCHO的20%至40%。如果剩余的HCHO是由雪中的通量产生的,则当边界层高度为40–50 m时,所需通量为1.9–2.5×1013分子m?2 s?1。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号