首页> 外文期刊>Journal of Electron Spectroscopy and Related Phenomena >Correlation effects in magnetic materials: An ab initio investigation on electronic structure and spectroscopy
【24h】

Correlation effects in magnetic materials: An ab initio investigation on electronic structure and spectroscopy

机译:磁性材料中的相关效应:从头开始研究电子结构和光谱

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Various technical developments enlarged the potential of angle-resolved photoemission spectroscopy (ARPES) tremendously during the last two decades. In particular improved momentum and energy resolution in combination with spin-resolution as well as the use of photon energies from few eV up to several keV makes ARPES a rather unique tool to investigate the electronic properties of solids and surfaces. Obviously, this rises the need for a corresponding theoretical formalism that allows to accompany experimental ARPES studies in an adequate way. As will be demonstrated by several examples this goal could be achieved by various recent developments on the basis of density functional theory (DFT) in combination with dynamical mean field theory (DMFT) and with the one-step model of photoemission (1SM). A concrete realization of electronic structure calculations in the framework of multiple scattering theory further more provides direct access to the spectral function of the initial states via the one-electron Green function. Based on this bare spectral function matrix-element and final-state effects as well as surface related features may be calculated in addition using the one-step formalism that offers the possibility to analyse corresponding angle-resolved photoemission experiments in a quantitative sense. The impact of chemical disorder can be handled by means of the coherent potential approximation (CPA) alloy theory, in the electronic structure calculation as well as in the photoemission analyses. The same holds for the influence of electronic correlation effects. These are accounted for by means of the DMFT that removes the most serious short comings of calculations based on the standard local spin density approximation (LSDA). The self-consistent combination of this approach with the CPA allows, for example, the investigation of correlated transition metal alloys. Finally, accounting for the photon momentum and going beyond the single scatterer approximation for the final state allows to deal quantitatively with ARPES in the high-energy regime (HAXPES) that reduces the influence of the surface on the spectra and therefore probes primarily the bulk electronic structure this way.
机译:在过去的二十年中,各种技术发展极大地扩大了角分辨光发射光谱法(ARPES)的潜力。特别是,提高的动量和能量分辨率与自旋分辨率相结合,以及从几eV到几keV的光子能量的使用,使ARPES成为研究固体和表面电子特性的相当独特的工具。显然,这需要相应的理论形式主义,以适当的方式伴随实验性ARPES研究。如将通过几个示例说明的那样,该目标可以通过在密度泛函理论(DFT)的基础上结合动态平均场理论(DMFT)和光发射的一步模型(1SM)进行的各种最新开发来实现。在多重散射理论的框架内具体实现电子结构计算,还可以通过单电子格林函数直接访问初始状态的光谱函数。此外,还可以使用一步式来计算基于裸露的光谱函数的矩阵元素和最终状态效应以及与表面相关的特征,这提供了在定量意义上分析相应的角度分辨光发射实验的可能性。可以通过相干势近似(CPA)合金理论,在电子结构计算以及光发射分析中处理化学无序的影响。电子相关效应的影响也是如此。这些是通过DMFT解决的,该DMFT消除了基于标准局部自旋密度近似(LSDA)的最严重的计算不足。这种方法与CPA的自洽组合可以例如研究相关的过渡金属合金。最后,考虑到光子的动量并超出最终状态的单散射体近似值,可以定量处理高能态(HAXPES)中的ARPES,从而减少表面对光谱的影响,因此主要探测体电子这样构造。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号