首页> 外文期刊>Diffusion and Defect Data. Solid State Data, Part B. Solid State Phenomena >Microcrystalline Silicon Thin-Films Grown by Plasma Enhanced Chemical Vapour Deposition - Growth Mechanisms and Grain Size Control
【24h】

Microcrystalline Silicon Thin-Films Grown by Plasma Enhanced Chemical Vapour Deposition - Growth Mechanisms and Grain Size Control

机译:等离子体增强化学气相沉积生长的微晶硅薄膜-生长机理和晶粒尺寸控制

获取原文
获取原文并翻译 | 示例
           

摘要

Besides plasma reactions, Plasma Enhanced Chemical Vapor Deposition of silicon thin films at low temperatures involves surface and subsurface reactions of the impinging radicals and ions. Dilution of the silane feedstock in hydrogen or high dissociation of pure silane results in a large flux of atomic hydrogen towards the substrate, which can induce a transition from amorphous to microcrystalline silicon growth. In this paper we review previous results based on the layer-by-layer technique, which demonstrate that the ratio of atomic hydrogen with respect to silicon radicals is the main parameter governing the nature of the films and allows for the growth of fully crystallized thin layers on various substrates, These studies highlight the importance of subsurface reactions on microcrystalline silicon formation. We show that the driving force for the formation of stable nuclei is the achievement of a highly porous and hydrogen-rich layer. The plasma is also a source of ions which have varying effects on the film properties, depending on the energy and identity (H~+ and SiH_x~+) of the impinging ions. We discuss the role of ion energy on the different stages of the growth and show that this can be used to control the grain size from a few nanometers up to few tens of nanometers. In particular, we highlight the role of ion energy on the different stages of the growth. Finally, we will present results concerning the use of silicon tetrafluoride as a feedstock, which allow us to achieve polycrystalline silicon thin films (~ 100 nrn thick) even at a substrate temperature of 200 ℃.
机译:除等离子体反应外,低温下硅薄膜的等离子体增强化学气相沉积还涉及撞击的自由基和离子的表面和亚表面反应。硅烷原料在氢气中的稀释或纯硅烷的高度解离导致原子氢流向基材的通量大,这可能导致从非晶硅向微晶硅生长的过渡。在本文中,我们基于逐层技术回顾了先前的结果,这些结果表明原子氢相对于硅自由基的比率是控制薄膜性质的主要参数,并允许完全结晶的薄层的生长这些研究强调了地下反应对微晶硅形成的重要性。我们表明形成稳定核的驱动力是高度多孔和富氢层的实现。等离子体还是离子源,根据撞击离子的能量和特性(H〜+和SiH_x〜+),它们会对薄膜的性能产生不同的影响。我们讨论了离子能量在生长的不同阶段的作用,并表明可以将其用于控制​​从几纳米到几十纳米的晶粒尺寸。特别是,我们强调了离子能量在生长的不同阶段的作用。最后,我们将介绍有关使用四氟化硅作为原料的结果,这使我们即使在200℃的衬底温度下也可以获得多晶硅薄膜(约100 nrn厚)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号