首页> 外文期刊>Journal of Fuel Cell Science and Technology >An Improved MRT Lattice Boltzmann Model for Calculating Anisotropic Permeability of Compressed and Uncompressed Carbon Cloth Gas Diffusion Layers Based on X-Ray Computed Micro-Tomography
【24h】

An Improved MRT Lattice Boltzmann Model for Calculating Anisotropic Permeability of Compressed and Uncompressed Carbon Cloth Gas Diffusion Layers Based on X-Ray Computed Micro-Tomography

机译:基于X射线计算机断层扫描技术的压缩和未压缩碳布气体扩散层各向异性渗透率的改进MRT格子Boltzmann模型

获取原文
获取原文并翻译 | 示例
       

摘要

The gas diffusion layers (GDLs) in polymer proton exchange membrane fuel cells are under compression in operation. Understanding and then being able to quantify the reduced ability of GDLs to conduct gases due to the compression is hence important in fuel cell design. In this paper, we investigated the change of anisotropic permeability of GDLs under different compressions using the improved multiple-relaxation time (MRT) lattice Boltzmann model and X-ray computed micro-tomography. The binary 3D X-ray images of GDLs under different compressions were obtained using the technologies we developed previously, and the permeability of the GDLs in both through-plane and in-plane directions was calculated by simulating gas flow at micron scale through the 3D images. The results indicated that, in comparison with the single-relaxation time (SRT) lattice Boltzmann model commonly used in the literature, the MRT model is robust and flexible in choosing model parameters. The SRT model can give accurate results only when using a specific relaxation parameter whose value varies with porosity. The simulated results using the MRT model reveal that compression could lead to a significant decrease in permeability in both through-plane and in-plane directions, and that the relationship between the decreased permeability and porosity can be well described by both Kozeny-Carman relation and the equation derived by Tomadakis and Sotirchos (1993, "Ordinary and Transition Rdgime Diffusion in Random Fiber Structure," AIChE J., 39, pp. 397-412) for porosity in the range from 50% to 85%. Since GDLs compression takes place mainly in the through-plane direction, the results presented in this work could provide an easy way to estimate permeability reduction in both through-plane and in-plane directions when the compressive pressure is known.
机译:聚合物质子交换膜燃料电池中的气体扩散层(GDL)在运行中处于压缩状态。因此,理解并能够量化由于压缩引起的GDL传导气体的能力降低在燃料电池设计中很重要。在本文中,我们使用改进的多重弛豫时间(MRT)格子Boltzmann模型和X射线计算机断层扫描技术研究了不同压缩下GDL的各向异性渗透率的变化。使用我们先前开发的技术获得了在不同压缩下GDL的二进制3D X射线图像,并通过模拟3D图像中微米级的气体流量来计算GDL在平面方向和平面方向上的渗透率。结果表明,与文献中常用的单弛豫时间(SRT)晶格玻尔兹曼模型相比,MRT模型在选择模型参数方面具有鲁棒性和灵活性。仅当使用特定的弛豫参数(其值随孔隙度变化)时,SRT模型才能给出准确的结果。使用MRT模型进行的模拟结果表明,压缩可能会导致贯穿面和面内方向的渗透率显着降低,并且降低的渗透率与孔隙率之间的关系可以通过Kozeny-Carman关系和由Tomadakis和Sotirchos(1993,“随机纤维结构中的普通和过渡Rdgime扩散”,AIChE J.,39,pp。397-412)得出的孔隙率在50%至85%范围内的方程。由于GDL的压缩主要发生在贯穿平面的方向,因此在已知压缩压力的情况下,这项工作中提供的结果可以提供一种简便的方法来估算贯穿平面和平面内方向的渗透率降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号