首页> 外文期刊>International Journal for Numerical Methods in Fluids >Determination of the anisotropic permeability of a carbon cloth gas diffusion layer through X-ray computer micro-tomography and single-phase lattice Boltzmann simulation
【24h】

Determination of the anisotropic permeability of a carbon cloth gas diffusion layer through X-ray computer micro-tomography and single-phase lattice Boltzmann simulation

机译:通过X射线计算机显微断层扫描和单相晶格Boltzmann模拟确定碳布气体扩散层的各向异性渗透率

获取原文
获取原文并翻译 | 示例
       

摘要

An investigation of the anisotropic permeability of a carbon cloth gas diffusion layer (GDL) based on the integration of X-ray micro-tomography and lattice Boltzmann (LB) simulation is presented. The method involves the generation of a 3D digital model of a carbon cloth GDL as manufactured using X-ray shadow images acquired through X-ray micro-tomography at a resolution of 1.74μm. The resulting 3D model is then split into 21 volumes and integrated with a LB single-phase numerical solver in order to predict three orthogonal permeability tensors when a pressure difference is prescribed in the through-plane direction. The 21 regions exhibit porosity values in the range of 0.910-0.955, while the average fibre diameter is 4μm. The results demonstrate that the simulated through-plane permeability is about four times higher than the in-plane permeability for the sample imaged and that the corresponding degrees of anisotropy for the two orthogonal off-principal directions are 0.22 and 0.27. The results reveal that flow channelling can play an important role in gas transport through the GDL structure due to the non-homogeneous porosity distribution through the material. The simulated results are also applied to generate a parametric coefficient for the Kozeny-Carman (KC) method of determining permeability. The current research reveals that by applying the X-ray tomography and LB techniques in a complementary manner, there is a strong potential to gain a deeper understanding of the microscopic fluidic phenomenon in representative models of porous fuel cell structures and how this can influence macroscopic transport characteristics which govern fuel cell performance.
机译:基于X射线显微断层扫描和晶格玻尔兹曼(LB)模拟的集成,研究了碳布气体扩散层(GDL)的各向异性渗透性。该方法涉及生成碳布GDL的3D数字模型,该模型使用通过X射线显微断层扫描以1.74μm的分辨率获取的X射线阴影图像制造。然后将生成的3D模型分为21个体积,并与LB单相数值解算器集成在一起,以便在沿贯通平面方向指定压差时预测三个正交渗透率张量。 21个区域的孔隙率值在0.910-0.955范围内,而平均纤维直径为4μm。结果表明,对于所成像的样品,模拟的通透磁导率大约是平面内磁导率的四倍,并且两个正交的偏离主方向的相应各向异性度分别为0.22和0.27。结果表明,由于通过材料的非均质孔隙分布,流道在气体通过GDL结构的传输中起着重要作用。仿真结果也可用于为确定渗透率的Kozeny-Carman(KC)方法生成参数系数。当前的研究表明,通过以互补的方式应用X射线断层扫描和LB技术,在多孔燃料电池结构的代表性模型中,有很强的潜力可以更深入地了解微观流体现象,以及这如何影响宏观运输。控制燃料电池性能的特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号