...
首页> 外文期刊>Journal of Fluid Mechanics >Detonation ignition from a temperature gradient for a two-step chain-branching kinetics model
【24h】

Detonation ignition from a temperature gradient for a two-step chain-branching kinetics model

机译:两步链支化动力学模型的温度梯度引爆

获取原文
获取原文并翻译 | 示例
           

摘要

The evolution from a linear temperature gradient to a detonation is investigated for combustible materials whose chemistry is governed by chain-branching kinetics, using a combination of high-activation-temperature asymptotics and numerical simulations. A two-step chemical model is used, which captures the main properties of detonations in chain-branching fuels. The first step is a thermally neutral induction time, representing chain initiation and branching, which has a temperature-sensitive Arrhenius form of the reaction rate. At the end of the induction time is a transition point where the fuel is instantaneously converted into chain-radicals. The second step is the main exothermic reaction, representing chain termination, assumed to be temperature insensitive. Emphasis is on comparing and contrasting the results with previous studies that used simple one-step kinetics. It is shown that the largest temperature gradient for which a detonation can be successfully ignited depends on the heat release rate of the main reaction. The slower the heat release compared to the initial induction time, the shallower the gradient has to be for successful ignition. For example, when the rate of heat release is moderate or slow on the initial induction time scale, it was found that the path of the transition point marking the end of the induction stage should move supersonically, in which case its speed is determined only by the initial temperature gradient. For steeper gradients such that the transition point propagates subsonically from the outset, the rate of heat release must be very high for a detonation to be ignited. Detonation ignition for the two-step case apparently does not involve the formation of secondary shocks, unlike some cases when one-step kinetics is used. [References: 26]
机译:结合高活化温度渐近性和数值模拟,研究了化学性质受链支化动力学控制的可燃材料从线性温度梯度到爆炸的演变。使用了两步化学模型,该模型捕获了链支化燃料中爆炸的主要特性。第一步是热中性诱导时间,代表链引发和支化,其反应速率具有温度敏感性阿伦尼乌斯形式。在感应时间结束时,是一个过渡点,在该过渡点处,燃料立即转换为链根基。第二步是主要的放热反应,代表链终止,被认为对温度不敏感。重点是将结果与以前使用简单一步动力学的研究进行比较和对比。结果表明,能够成功引爆的最大温度梯度取决于主反应的放热速率。与初始感应时间相比,放热越慢,成功点火所必须的梯度就越浅。例如,当放热速率在初始感应时间范围内为中等或缓慢时,发现标记感应阶段结束的过渡点路径应以超声波方式移动,在这种情况下,其速度仅由初始温度梯度。对于较陡的坡度,以使过渡点从一开始就以亚音速传播,放热的速率必须很高才能点燃爆炸。与使用单步动力学的某些情况不同,对于两步情况的引爆点火显然不涉及二次冲击的形成。 [参考:26]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号