...
首页> 外文期刊>Journal of Controlled Release: Official Journal of the Controlled Release Society >Modeling the release of proteins from degrading crosslinked dextran microspheres using kinetic Monte Carlo simulations
【24h】

Modeling the release of proteins from degrading crosslinked dextran microspheres using kinetic Monte Carlo simulations

机译:使用动力学蒙特卡洛模拟对降解交联的葡聚糖微球中蛋白质的释放进行建模

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To optimize and predict the release of proteins from biodegradable microspheres based on crosslinked dextran, a fundamental understanding of the mechanisms controlling their release is necessary. For that purpose, a mathematical model has been developed to describe the release of proteins from these hydrogel-based microspheres. A kinetic Monte Carlo scheme for the degradation of a small domain inside the microsphere was developed. The results from this were used in a second kinetic Monte Carlo scheme to model the diffusion and the subsequent release of proteins. The only processes included in this model are diffusion and degradation. The general effects of diffusion, crosslink density, protein loading, and clustering of proteins on the release were investigated. The model crosslink density (X-model) and the model diffasivity (D-model) were fitted to experimental release data of BSA monomer from hydroxyethyl methacrylated dextran (dex-HEMA) microspheres. By using the experimental release curves of liposomes and BSA monomer, it was found that (1) the model crosslink density (X-model) scales with the hydrodynamic diameter (d(h)) as d(h)(.)(1)(64) and (2) the diffusivity of the protein (D-model) scales approximately with 1/d(h) (Stokes-Einstein). Using these scaling relations, quantitative predictions of the release curves of BSA dimer, immunoglobulin G and human growth hormone were possible. In conclusion, this model may play an important role in the optimization, understanding and prediction of the release of various proteins from degradable hydrogels. (c) 2005 Elsevier B.V. All rights reserved.
机译:为了优化和预测基于交联葡聚糖的可生物降解微球中蛋白质的释放,对控制其释放机理的基本理解是必要的。为此,已经开发了数学模型来描述蛋白质从这些基于水凝胶的微球中的释放。开发了用于降解微球内部小域的动力学蒙特卡洛方案。由此产生的结果用于第二个动力学蒙特卡洛方案中,以模拟蛋白质的扩散和随后的释放。此模型中包含的唯一过程是扩散和降解。研究了扩散,交联密度,蛋白质负载和蛋白质聚集对释放的一般影响。将模型交联密度(X-模型)和模型扩散率(D-模型)拟合到BSA单体从甲基丙烯酸羟乙基葡聚糖(dex-HEMA)微球的实验释放数据。通过使用脂质体和BSA单体的实验释放曲线,发现(1)模型交联密度(X-model)随流体动力学直径(d(h))为d(h)(。)而缩放(1) (64)和(2),蛋白质的扩散率(D模型)大约与1 / d(h)成比例(斯托克斯-爱因斯坦)。使用这些比例关系,可以对BSA二聚体,免疫球蛋白G和人类生长激素的释放曲线进行定量预测。总之,该模型在优化,理解和预测可降解水凝胶中各种蛋白质的释放中可能起重要作用。 (c)2005 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号