...
首页> 外文期刊>Journal of Catalysis >Understanding the influence of the pretreatment procedure on platinum particle size and particle-size distribution for SiO_2 impreganted with [Pt~(2+)(NH_3)_4](NO_3~-)_2
【24h】

Understanding the influence of the pretreatment procedure on platinum particle size and particle-size distribution for SiO_2 impreganted with [Pt~(2+)(NH_3)_4](NO_3~-)_2

机译:了解预处理程序对浸渍[Pt〜(2 +)(NH_3)_4](NO_3〜-)_ 2的SiO_2的铂粒径和粒径分布的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Using a combination of mass spectrometry, in situ quick extended X-ray absorption fine structure, high-resolution transmission electron microscopy, and hydrogen chemisorption, we studied the reactions taking place during different pretreatments of the catalyst precursor [Pt~(2+)(NH_3)_4](NO_3~-)_2 impregnated on high-surface-area SiO_2 (400 m~3/g). Direct reduction in hydrogen leads to the formation of Pt metal particles in the temperature range of 150-200 deg C in a fast process. The reduction is accompanied by sintering of the platinum particles, leading to relatively large particles, with an average particle size of approximately 14-16 A. Autoreduction in helium leads to multiple steps in the reduction. Around 210 and 240 deg C, NO_x released due to the decomposition of NH_4NO_3, formed during heating up to 180-200 deg C, reduces the catalyst precursor at a high rate. At higher temperatures, the reduction continues slowly through an autoreduction of the Pt(NH_3)_x~(2+) complex. The slow reduction rate suggests a nonmobile species. Accordingly, the final metal-particle size is small, with particles of 10-12 A. Calcination-reduction results in large particles via a similar decomposition of NH_4NH_3. Particle-size distribution after autoreduction is considerably smaller than after direct reduction. The key to obtaining small particles with a relatively narrowsized distribution is to avoid the formation of mobile species. With impregnated [Pt~(2+)(NH_3)_4](NO_3~-)_2, this is best achieved by autoreduction.
机译:结合质谱,原位快速扩展X射线吸收精细结构,高分辨率透射电子显微镜和氢化学吸附的组合,我们研究了催化剂前体[Pt〜(2 +)( NH_3)_4](NO_3〜-)_ 2浸渍在高表面积SiO_2(400 m〜3 / g)上。氢的直接还原导致在快速过程中在150-200摄氏度的温度范围内形成Pt金属颗粒。还原过程伴随着铂颗粒的烧结,从而产生了较大的颗粒,平均粒径约为14-16A。氦气的自动还原导致还原过程中的多个步骤。在210和240摄氏度左右,由于加热到180-200摄氏度期间形成的NH_4NO_3分解而释放出的NO_x以高速率还原了催化剂前体。在较高温度下,还原过程通过Pt(NH_3)_x〜(2+)络合物的自动还原而缓慢进行。缓慢的降低速度表明是不可移动的物种。因此,最终的金属颗粒尺寸很小,为10-12 A的颗粒。煅烧还原可通过类似的NH_4NH_3分解产生大颗粒。自动还原后的粒度分布明显小于直接还原后的粒度分布。获得具有相对窄的分布的小颗粒的关键是避免形成流动的物质。浸渍[Pt〜(2 +)(NH_3)_4](NO_3〜-)_ 2时,最好通过自动还原来实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号