首页> 外文期刊>Journal of Computational Physics >Hybridizable discontinuous Galerkin projection methods for Navier-Stokes and Boussinesq equations
【24h】

Hybridizable discontinuous Galerkin projection methods for Navier-Stokes and Boussinesq equations

机译:Navier-Stokes和Boussinesq方程的可混合不连续Galerkin投影方法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Schemes for the incompressible Navier-Stokes and Boussinesq equations are formulated and derived combining the novel Hybridizable Discontinuous Galerkin (HDG) method, a projection method, and Implicit-Explicit Runge-Kutta (IMEX-RK) time-integration schemes. We employ an incremental pressure correction and develop the corresponding HDG finite element discretization including consistent edge-space fluxes for the velocity predictor and pressure correction. We then derive the proper forms of the element-local and HDG edge-space final corrections for both velocity and pressure, including the HDG rotational correction. We also find and explain a consistency relation between the HDG stability parameters of the pressure correction and velocity predictor. We discuss and illustrate the effects of the time-splitting error. We then detail how to incorporate the HDG projection method time-split within standard IMEX-RK time-stepping schemes. Our high-order HDG projection schemes are implemented for arbitrary, mixed-element unstructured grids, with both straight-sided and curved meshes. In particular, we provide a quadrature-free integration method for a nodal basis that is consistent with the HDG method. To prevent numerical oscillations, we develop a selective nodal limiting approach. Its applications show that it can stabilize high-order schemes while retaining high-order accuracy in regions where the solution is sufficiently smooth. We perform spatial and temporal convergence studies to evaluate the properties of our integration and selective limiting schemes and to verify that our solvers are properly formulated and implemented. To complete these studies and to illustrate a range of properties for our new schemes, we employ an unsteady tracer advection benchmark, a manufactured solution for the steady diffusion and Stokes equations, and a standard lock-exchange Boussinesq problem. (C) 2015 Elsevier Inc. All rights reserved.
机译:结合新颖的可混合不连续伽勒金(HDG)方法,投影方法和隐式-显式龙格-库塔(IMEX-RK)时间积分方案,制定并推导了不可压缩的Navier-Stokes和Boussinesq方程的方案。我们采用增量压力校正,并开发了相应的HDG有限元离散化,包括用于速度预测器和压力校正的一致边缘空间通量。然后,我们导出速度和压力的元素局部和HDG边缘空间最终校正的正确形式,包括HDG旋转校正。我们还发现并解释了压力校正的HDG稳定性参数和速度预测器之间的一致性关系。我们讨论并说明了时间分割误差的影响。然后,我们将详细介绍如何将时间分割的HDG投影方法纳入标准IMEX-RK时间步进方案中。我们的高阶HDG投影方案适用于具有直边网格和曲面网格的任意混合元素非结构化网格。特别是,我们提供了一种基于节点的无正交积分方法,该方法与HDG方法一致。为了防止数值振荡,我们开发了一种选择性节点限制方法。它的应用表明,它可以稳定高阶方案,同时在解决方案足够平滑的区域中保持高阶精度。我们进行时空收敛研究,以评估我们的积分和选择性限制方案的性质,并验证我们的求解器是否正确制定和实施。为了完成这些研究并说明我们新方案的一系列性能,我们采用了非稳态示踪剂平流基准,稳定扩散和Stokes方程的制造解决方案以及标准的锁交换Boussinesq问题。 (C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号