...
首页> 外文期刊>Journal of Computational Physics >Resolution of sub-element length scales in Brownian dynamics simulations of biopolymer networks with geometrically exact beam finite elements
【24h】

Resolution of sub-element length scales in Brownian dynamics simulations of biopolymer networks with geometrically exact beam finite elements

机译:具有几何精确束有限元的生物聚合物网络布朗动力学模拟中子元素长度尺度的分辨率

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Networks of crosslinked biopolymer filaments such as the cytoskeleton are the subject of intense research. Oftentimes, mechanics on the scale of single monomers (similar to 5 nm) govern the mechanics of the entire network (similar to 10 mu m). Until now, one either resolved the small scales and lost the big (network) picture or focused on mechanics above the single-filament scale and neglected the molecular architecture. Therefore, the study of network mechanics influenced by the entire spectrum of relevant length scales has been infeasible so far. We propose a method that reconciles both small and large length scales without the otherwise inevitable loss in either numerical efficiency or geometrical (molecular) detail. Both explicitly modeled species, filaments and their crosslinkers, are discretized with geometrically exact beam finite elements of Simo-Reissner type. Through specific coupling conditions between the elements of the two species, mechanical joints can be established anywhere along a beam's centerline, enabling arbitrary densities of chemical binding sites. These binding sites can be oriented to model the monomeric architecture of polymers. First, we carefully discuss the method and then demonstrate its capabilities by means of a series of numerical examples. (C) 2015 Elsevier Inc. All rights reserved.
机译:交联生物聚合物长丝(例如细胞骨架)的网络是深入研究的主题。通常,单个单体规模的力学(约5 nm)控制整个网络的力学(约10μm)。到现在为止,要么解决小规模问题,就失去大的(网络)图景,要么专注于单丝规模以上的力学,而忽略了分子结构。因此,到目前为止,关于相关长度尺度的整个频谱影响的网络力学的研究是不可行的。我们提出了一种在不影响数值效率或几何(分子)细节的情况下又不可避免地损失的方法,该方法可以兼顾小规模和大型规模。明确建模的物种,细丝及其交联剂都通过Simo-Reissner类型的几何精确束有限元离散化。通过两个物种的元素之间的特定耦合条件,可以在光束中心线的任何位置建立机械连接,从而可以实现任意密度的化学结合位点。这些结合位点可以被定向以模拟聚合物的单体结构。首先,我们仔细讨论该方法,然后通过一系列数值示例演示其功能。 (C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号