首页> 外文期刊>Journal of Computational Chemistry: Organic, Inorganic, Physical, Biological >Modeling Biophysical and Biological Properties from the Characteristics of the Molecular Electron Density, Electron Localization and Delocalization Matrices, and the Electrostatic Potential
【24h】

Modeling Biophysical and Biological Properties from the Characteristics of the Molecular Electron Density, Electron Localization and Delocalization Matrices, and the Electrostatic Potential

机译:从分子电子密度,电子定位和离域矩阵以及静电势的特征对生物物理和生物学特性进行建模

获取原文
获取原文并翻译 | 示例
           

摘要

The electron density and the electrostatic potential are fundamentally related to the molecular hamiltonian, and hence are the ultimate source of all properties in the ground- and excitedstates. The advantages of using molecular descriptors derived from these fundamental scalar fields, both accessible from theory and from experiment, in the formulation of quantitative structure-to-activity and structure-to-property relationships, collectively abbreviated as QSAR, are discussed. A few such descriptors encode for a wide variety of properties including, for example, electronic transition energies, pK_a's, rates of ester hydrolysis, NMR chemical shifts, DNA dimers binding energies, pstacking energies, toxicological indices, cytotoxicities, hepatotoxicities, carcinogenicities, partial molar volumes, partition coefficients (log P), hydrogen bond donor capacities, enzyme-substrate complementarities, bioisosterism, and regularities in the genetic code. Electronic fingerprinting from the topological analysis of the electron density is shown to be comparable and possibly superior to Hammett constants and can be used in conjunction with traditional bulk and liposolubility descriptors to accurately predict biological activities. A new class of descriptors obtained from the quantum theory of atoms in molecules' (QTAIM) localization and delocalization indices and bond properties, cast in matrix format, is shown to quantify transferability and molecular similarity meaningfully. Properties such as "interacting quantum atoms (IQA)" energies which are expressible into an interaction matrix of two body terms (and diagonal one body "self" terms, as IQA energies) can be used in the same manner. The proposed QSAR-type studies based on similarity distances derived from such matrix representatives of molecular structure necessitate extensive investigation before their utility is unequivocally established. VC 2014 The Author and the Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
机译:电子密度和静电势从根本上与分子哈密顿量有关,因此是基态和激发态下所有特性的最终来源。讨论了使用从这些基本标量场派生的分子描述子(从理论和实验上均可获得)在定量化结构与活性和结构与性质之间的关系(统称为QSAR)的过程中的优势。一些这样的描述符对多种性质进行编码,包括例如电子跃迁能,pK_a,酯水解速率,NMR化学位移,DNA二聚体结合能,pstacking能量,毒理学指标,细胞毒性,肝毒性,致癌性,部分摩尔比。量,分配系数(log P),氢键供体容量,酶-底物互补性,生物等排体和遗传密码中的规律性。电子密度的拓扑分析显示的电子指纹图谱具有可比性,并且可能优于Hammett常数,可以与传统的体积和脂溶性描述符结合使用,以准确预测生物活性。从分子中原子的量子理论(QTAIM)的定位和离域指数以及键性质(以矩阵格式显示)获得的一类新的描述符可以有意义地量化可传递性和分子相似性。可以以相同的方式使用诸如“相互作用量子原子(IQA)”能量之类的属性,这些能量可表达为两个身体项(以及对角线一个身体“自我”项,作为IQA能量)的相互作用矩阵。基于从分子结构的此类矩阵代表得出的相似距离而提出的QSAR类型研究需要进行广泛研究,然后才能明确确定其效用。 VC 2014作者和Wiley Periodicals,Inc.出版的《计算化学杂志》。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号