首页> 外文期刊>Journal of chemical theory and computation: JCTC >The Self-Association of Graphane Is Driven by London Dispersion and Enhanced Orbital Interactions
【24h】

The Self-Association of Graphane Is Driven by London Dispersion and Enhanced Orbital Interactions

机译:伦敦扩散和增强的轨道相互作用驱动石墨烷的自缔合

获取原文
获取原文并翻译 | 示例
           

摘要

We investigated the nature of the cohesive energy between graphane sheets via multiple CH center dot center dot center dot HC interactions, using density functional theory (DFT) including dispersion correction (Grimmes D3 approach) computations of [n]graphane sigma dimers (n = 6-73). For comparison, we also evaluated the binding between graphene sheets that display prototypical pi/pi interactions. The results were analyzed using the block-localized wave function (BLW) method, which is a variant of ab initio valence bond (VB) theory. BLW interprets the intermolecular interactions in terms of frozen interaction energy (Delta E-F) composed of electrostatic and Pauli repulsion interactions, polarization (Delta E-pol), charge-transfer interaction (Delta E-CT), and dispersion effects (Delta E-disp). The BLW analysis reveals that the cohesive energy between graphane sheets is dominated by two stabilizing effects, namely intermolecular London dispersion and two-way charge transfer energy due to the sigma CH -> sigma*(HC) interactions. The shift of the electron density around the nonpolar covalent C-H bonds involved in the intermolecular interaction decreases the C-H bond lengths uniformly by 0.001 angstrom. The Delta E-CT term, which accounts for similar to 15% of the total binding energy, results in the accumulation of electron density in the interface area between two layers. This accumulated electron density thus acts as an electronic glue for the graphane layers and constitutes an important driving force in the self-association and stability of graphane under ambient conditions. Similarly, the double faced adhesive tape style of charge transfer interactions was also observed among graphene sheets in which it accounts for similar to 18% of the total binding energy. The binding energy between graphane sheets is additive and can be expressed as a sum of CH center dot center dot center dot HC interactions, or as a function of the number of C-H bonds.
机译:我们使用密度泛函理论(DFT)包括[n]石墨烯sigma二聚体(n = 6)的色散校正(Grimmes D3方法),研究了通过多个CH中心点,中心点,中心点HC相互作用而在石墨烷片之间的内聚能的性质。 -73)。为了进行比较,我们还评估了显示原型pi / pi相互作用的石墨烯片之间的结合。使用块定位波函数(BLW)方法对结果进行了分析,这是从头算价键(VB)理论的一种变体。 BLW用冻结的相互作用能(Delta EF)解释分子间的相互作用,包括静电和Pauli排斥相互作用,极化(Delta E-pol),电荷转移相互作用(Delta E-CT)和分散效应(Delta E-disp) )。 BLW分析表明,由于sigma CH-> sigma *(HC)相互作用,石墨烷片之间的内聚能受两种稳定作用的支配,即分子间伦敦分散和双向电荷转移能。电子密度在分子间相互作用中所涉及的非极性共价C-H键周围的移动使C-H键长度均匀减小0.001埃。约占总结合能的15%的Delta E-CT项会导致两层之间的界面区域中电子密度的累积。因此,这种累积的电子密度充当石墨烯层的电子胶,并在环境条件下构成了石墨烯的自缔合和稳定性的重要驱动力。类似地,在石墨烯片之间也观察到双面胶带类型的电荷转移相互作用,其中它占总结合能的18%左右。石墨烷片之间的结合能是累加的,可以表示为CH中心点中心点中心点HC相互作用的总和,或者是C-H键数的函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号