...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Free Energy Calculations for the Peripheral Binding of Proteins/ Peptides to an Anionic Membrane. 1. Implicit Membrane Models
【24h】

Free Energy Calculations for the Peripheral Binding of Proteins/ Peptides to an Anionic Membrane. 1. Implicit Membrane Models

机译:蛋白质/肽与阴离子膜外围结合的自由能计算。 1.内隐膜模型

获取原文
获取原文并翻译 | 示例
           

摘要

The binding of peptides and proteins to the surface of complex lipid membranes is important in many biological processes such as cell signaling and membrane remodeling. Computational studies can aid experiments by identifying physical interactions and structural motifs that determine the binding affinity and specificity. However, previous studies focused on either qualitative behaviors of protein/ membrane interactions or the binding affinity of small peptides. Motivated by this observation, we set out to develop computational protocols for bimolecular binding to charged membranes that are applicable to both peptides and large proteins. In this work, we explore a method based on an implicit membrane/solvent model (generalized Born with a simple switching in combination with the Gouy-Chapman-Stem model for a charged interface), which we expect to lead to useful results when the binding does not implicate significant membrane deformation and local demixing of lipids. We show that the binding free energy can be efficiently computed following a thermodynamic cycle similar to protein-ligand binding calculations, especially when a Bennett acceptance ratio based protocol is used to consider both the membrane bound and solution conformational ensembles. Test calculations on a series of peptides show that our computational approach leads to binding affinities in encouraging agreement with experimental data, including for the challenging example of the bringing of flexible MARCKS-ED peptides to membranes. The calculations highlight that for a membrane with a significant fraction of anionic lipids, it is essential to include the effect of ion adsorption using the Stern model, which significantly modifies the effective surface charge. This implicit membrane model based computational protocol helps lay the groundwork for more systematic analysis of protein/peptide binding to membranes of complex shape and composition.
机译:肽和蛋白质与复杂脂质膜表面的结合在许多生物过程(例如细胞信号传导和膜重塑)中很重要。计算研究可以通过确定决定结合亲和力和特异性的物理相互作用和结构基序来辅助实验。然而,先前的研究集中于蛋白质/膜相互作用的定性行为或小肽的结合亲和力。出于这一观察的动机,我们着手开发用于双分子结合至带电荷膜的计算协议,该协议适用于肽和大蛋白。在这项工作中,我们探索了一种基于隐式膜/溶剂模型(带电荷接口的Gouny-Chapman-Stem模型的简单转换与广义Born结合)的方法,当结合时,我们期望得到有用的结果并不意味着明显的膜变形和脂质的局部分解。我们表明,结合蛋白-配体结合计算后的热力学循环可以有效地计算结合自由能,特别是当基于Bennett接受比率的协议用于考虑膜结合和溶液构象集合时。对一系列肽段的测试计算表明,我们的计算方法导致了结合亲和力,令人鼓舞地与实验数据吻合,其中包括将挠性MARCKS-ED肽带入膜的具有挑战性的例子。计算结果表明,对于具有大量阴离子脂质的膜而言,必须使用Stern模型包括离子吸附作用,该作用会显着改变有效表面电荷。这种基于隐式膜模型的计算协议有助于为蛋白质/肽与复杂形状和组成的膜的结合进行更系统的分析奠定基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号