...
【24h】

High temperature performance of soy-based adhesives

机译:大豆基胶粘剂的高温性能

获取原文
获取原文并翻译 | 示例

摘要

We studied the high temperature performance of soy meal processed to different protein concentrations (flour, concentrate, and isolate), as well as formulated soy-based adhesives, and commercial nonsoy adhesives for comparison. No thermal transitions were seen in phe-nol-resorcinol-formaldehyde (PRF) or soy-phenol-formaldehyde (SoyPF) or in as-received soy flour adhesive during differential scanning calorimetry scans heating at 10°C/min between 35 and 235 °C. Heat flow rates decreased in the order soy flour (as received) > SoyPF > PRF > emulsion polymer isocyanate (EPI). In thermogravimetric analysis (TGA) scans from 110 to 300 °C at 2°C/min, total weight loss decreased in the order soy flour (as-received) > SoyPF > PRF > casein > maple > EPI. For bio-based materials, the total weight loss (TGA) decreased in the order soy flour (as-received) > concentrate, casein > isolate. Dynamic mechanical analysis from 35 to 235 °C at 5 cC/min of two veneers bonded by cured adhesive showed 30-40% decline in storage modulus for maple compared to 45-55% for the adhesive made from soy flour in water (Soy Flour) and 70-80% for a commercial poly(vinyl acetate) modified for heat resistance. DMA on glass fiber mats showed thermal softening temperatures increasing in the order Soy Flour < casein < isolate < concentrate. We suggest that the low molecular weight carbohydrates plasticize the flour product. When soy-based adhesives were tested in real bondlines in DMA and creep tests in shear, they showed less decrease in storage modulus than the glass fiber-supported specimens. This suggests that interaction with the wood substrate improved the heat resistance property of the adhesive. Average hot shear strengths (ASTM D7247) were 4.6 and 3.1 MPa for SoyPF and Soy Flour compared to 4.7 and 0.8 MPa for PRF and EPI and 4.7 for solid maple. As a whole, these data suggest that despite indications of heat sensitivity when tested neat, soy-based adhesives are likely to pass the heat resistance criterion required for structural adhesives.
机译:我们研究了加工成不同蛋白质浓度(面粉,浓缩物和分离物)的豆粕的高温性能,以及配制的大豆基胶粘剂和市售非大豆胶粘剂,以进行比较。在差示扫描量热法以35°C至235°C的速度以10°C / min加热的过程中,在苯酚-间苯二酚-甲醛(PRF)或大豆酚-甲醛(SoyPF)或原样的大豆粉粘合剂中均未观察到热转变。 C。热流率按大豆粉(接收时)> SoyPF> PRF>乳液聚合物异氰酸酯(EPI)的顺序降低。在热重分析(TGA)中,以2°C / min的速度从110到300°C进行扫描时,总重量损失按大豆粉的顺序降低(按接收顺序)> SoyPF> PRF>酪蛋白>枫木> EPI。对于生物基材料,总重量损失(TGA)降低的顺序依次为:大豆粉(按原样)>浓缩物,酪蛋白>分离物。以35 c / min的速度从35到235°C进行的动态动态力学分析显示,固化的胶粘剂粘合的两个胶合板的储能模量下降了30-40%,相比之下,大豆粉在水中制成的胶粘剂的储能模量下降了45-55%(大豆粉) )和70-80%(经耐热改性的市售聚乙酸乙烯酯)。玻璃纤维垫上的DMA显示热软化温度按大豆粉<酪蛋白<分离物<浓缩物的顺序增加。我们建议低分子量碳水化合物可塑化面粉产品。当在DMA的真实粘结层中测试大豆基胶粘剂并在剪切力下进行蠕变测试时,与玻璃纤维支撑的样品相比,它们的储能模量下降幅度较小。这表明与木材基材的相互作用改善了粘合剂的耐热性。 SoyPF和大豆粉的平均热剪切强度(ASTM D7247)为4.6和3.1 MPa,而PRF和EPI为4.7和0.8 MPa,固体枫为4.7。总体而言,这些数据表明,尽管在进行纯净测试时有热敏感性的迹象,但大豆基胶粘剂仍可能通过结构胶粘剂所需的耐热性标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号