首页> 外文期刊>Journal of biomechanical engineering. >Flow Field Analysis in Expanding Healthy and Emphysematous Alveolar Models Using Particle Image Velocimetry
【24h】

Flow Field Analysis in Expanding Healthy and Emphysematous Alveolar Models Using Particle Image Velocimetry

机译:使用粒子图像测速仪扩展健康气肿性肺气肿模型的流场分析

获取原文
获取原文并翻译 | 示例
           

摘要

Particulates that deposit in the acinus region of the lung have the potential to migrate through the alveolar wall and into the blood stream. However, the fluid mechanics governing particle transport to the alveolar wall are not well understood. Many physiological conditions are suspected to influence particle deposition including morphometry of the acinus, expansion and contraction of the alveolar walls, lung heterogeneities, and breathing patterns. Some studies suggest that the recirculation zones trap aerosol particles and enhance particle deposition by increasing their residence time in the region. However, particle trapping could also hinder aerosol particle deposition by moving the aerosol particle further from the wall. Studies that suggest such flow behavior have not been completed on realistic, nonsymmetric, three-dimensional, expanding alveolated geometry using realistic breathing curves. Furthermore, little attention has been paid to emphysemic geometries and how pathophysiological alterations effect deposition. In this study, fluid flow was examined in three-dimensional, expanding, healthy, and emphysemic alveolar sac model geometries using particle image velocimetry under realistic breathing conditions. Penetration depth of the tidal air was determined from the experimental fluid pathlines. Aerosol particle deposition was estimated by simple superposition of Brownian diffusion and sedimentation on the convected particle displacement for particles diameters of 100-750 nm. This study (1) confirmed that recirculation does not exist in the most distal alveolar regions of the lung under normal breathing conditions, (2) concluded that air entering the alveolar sac is convected closer to the alveolar wall in healthy compared with emphysematous lungs, and (3) demonstrated that particle deposition is smaller in emphysematous compared with healthy lungs.
机译:沉积在肺部腺泡区域的微粒可能会迁移穿过肺泡壁并进入血流。但是,控制颗粒向肺泡壁转运的流体力学尚未广为人知。怀疑许多生理状况会影响颗粒沉积,包括腺泡的形态,肺泡壁的膨胀和收缩,肺异质性和呼吸方式。一些研究表明,再循环区会捕获气溶胶颗粒,并通过增加其在该区域的停留时间来增强颗粒沉积。然而,通过将气溶胶颗粒移离壁更远,颗粒捕集也可能阻碍气溶胶颗粒沉积。研究表明,这种流动行为尚未通过逼真的呼吸曲线在逼真的,非对称,三维,膨胀的带齿几何形状上完成。此外,对肺气肿的几何形状以及病理生理改变如何影响沉积的关注很少。在这项研究中,在现实的呼吸条件下,使用粒子图像测速技术在三维,扩展,健康和肺气肿的肺泡囊模型几何形状中检查了流体流动。从实验流体路径确定潮汐空气的渗透深度。对于直径为100-750 nm的对流粒子位移,通过布朗扩散和沉降的简单叠加来估算气溶胶粒子的沉积。这项研究(1)证实,在正常呼吸条件下,肺的最远端肺泡区域不存在再循环;(2)得出结论,与肺气肿的肺相比,进入肺泡囊的空气在健康条件下更靠近肺泡壁对流,并且(3)证明与健康的肺相比,气肿的颗粒沉积较小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号