首页> 外文学位 >Flow field analysis in an expanding healthy and emphysematous alveolar model using Particle Image Velocimetry.
【24h】

Flow field analysis in an expanding healthy and emphysematous alveolar model using Particle Image Velocimetry.

机译:使用粒子图像测速技术在扩展的健康气肿性肺气肿模型中进行流场分析。

获取原文
获取原文并翻译 | 示例

摘要

Particle deposition in the acinus region of the lung is a significant area of interest, because particles can potentially travel into the bloodstream through the capillaries in the lung. Drugs, in the form of aerosols, small particulates in a volume of air, may be delivered through the respiratory system. Also, toxic, airborne, particles could enter the body through the pulmonary capillaries in the acinus region of the lung. In order to accurately predict particle deposition, the aspects that influence deposition needs to be understood.;Many physiological features may influence flow and particle deposition in the lung; the geometry of the acinus, expansion and contraction of the alveolar walls due to breathing mechanics, heterogeneities in the lung, breathing flow rate, and the number of breaths. In literature, streamlines and pathlines have been examined, both experimentally and computationally, in models representing the alveolar region of the lung. Some of these studies suggest the presence of irreversible flow, which would significantly influence particle deposition. However, none of these models incorporated all significant features: non-symmetric, three dimensional, expanding geometry. Therefore, flow mechanics, behind particle deposition, in the alveolar region are not well understood. Furthermore, lung disease influences the physiological factors that impact particle deposition. Emphysema physically changes the structure of the alveolar region of the lung. How particle deposition changes with emphysema is not fully understood.;In this work, two different alveolar geometries were examined using Particle Image Velocimetry (PIV). The first model represented a healthy alveolar sac, while the second model represented an emphysematous alveolar sac. The same, realistic flow rate was used for both models, which allowed for the fluid flow to be examined as only a function of geometry. The PIV technique was validated by comparing to CFD results, using a simple balloon geometry. Pathlines were plotted in the models in order to examine the fluid flow with respect to time. The fluid was examined, by use of streamlines and pthalines, at the entrance of the alveolar sacs and in areas of high probability for irreversible flow. It was found that the fluid flow inside both alveolar sac geometries was completely reversible, and therefore no mixing was taking place. The comparison between the healthy and emphysematic alveolar sac models showed that the pathlines in health traveled closer to the alveolar walls. Particle deposition by Brownian Diffusion was estimated for particle diameter range of 0.1 microm to 0.01 microm. For the pathlines that began at the duct entrance, the pathlines came approximately 1.5 times closer to the wall in the healthy case when compared to emphysema. Because the pathline traveled closer to the alveolar walls, the particle diffusion was greater in the healthy then emphysema. In the healthy geometry particles with a diameter less then 0.02 microm were estimated to diffuse to all of the alveolar walls within a 5 second time frame, where in emphysema 7 seconds would be needed. It was also determined that if a particle diffuses off of the original streamline, it will remain in the alveolar sac, therefore allowing it to deposit in later breaths.
机译:肺腺孔区域中的颗粒沉积是一个重要的研究领域,因为颗粒可能会通过肺中的毛细血管进入血流。呈气溶胶形式的药物,空气中的少量微粒可以通过呼吸系统输送。同样,有毒的,空气传播的颗粒可能会通过肺腺泡区域中的肺毛细血管进入人体。为了准确预测颗粒沉积,需要了解影响沉积的各个方面。许多生理特征可能会影响肺中的流量和颗粒沉积;由于呼吸机制,肺部异质性,呼吸流速和呼吸次数,导致了腺泡的几何形状,肺泡壁的膨胀和收缩。在文献中,已经在代表肺泡区域的模型中通过实验和计算方式检查了流线和路径。这些研究中的一些表明存在不可逆流,这将显着影响颗粒沉积。但是,这些模型都没有包含所有重要功能:非对称,三维,可扩展的几何形状。因此,在肺泡区域中,在颗粒沉积之后的流动力学尚未得到很好的理解。此外,肺部疾病影响影响颗粒沉积的生理因素。肺气肿会物理改变肺泡区域的结构。尚未完全理解颗粒沉积如何随气肿而变化。在这项工作中,使用粒子图像测速技术(PIV)检查了两种不同的肺泡几何形状。第一个模型代表健康的肺泡囊,而第二个模型代表气肿性肺泡囊。两种模型均使用相同的实际流速,从而仅根据几何函数检查流体流量。通过使用简单的球囊几何形状与CFD结果进行比较,对PIV技术进行了验证。在模型中绘制了路径线,以检查相对于时间的流体流量。通过使用流线和邻苯二酚,在肺泡囊的入口处以及在不可逆流的高可能性区域中检查了流体。发现两个肺泡囊几何形状内的流体流动是完全可逆的,因此没有发生混合。健康和肺气肿的肺泡囊模型之间的比较表明,健康的路径更接近肺泡壁。通过布朗扩散法估计的颗粒沉积的粒径范围为0.1微米至0.01微米。对于始于导管入口的路径,与肺气肿相比,在健康情况下,路径距离壁大约1.5倍。由于路径走近肺泡壁,因此健康肺气肿中的颗粒扩散更大。在健康的几何形状中,估计直径小于0.02微米的颗粒会在5秒钟的时间内扩散到所有的肺泡壁,而在肺气肿中则需要7秒钟。还确定如果颗粒从原始流线中扩散出来,它将保留在肺泡囊中,因此可以在以后的呼吸中沉积。

著录项

  • 作者

    Oakes, Jessica.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Engineering Biomedical.;Engineering Mechanical.
  • 学位 M.S.
  • 年度 2008
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号