...
首页> 外文期刊>Journal of Biomechanics >Flow field analysis in a compliant acinus replica model using particle image velocimetry (PIV).
【24h】

Flow field analysis in a compliant acinus replica model using particle image velocimetry (PIV).

机译:使用粒子图像测速仪(PIV)在顺应性腺腺复制模型中进行流场分析。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Inhaled particles reaching the alveolar walls have the potential to cross the blood-gas barrier and enter the blood stream. Experimental evidence of pulmonary dosimetry, however, cannot be explained by current whole lung dosimetry models. Numerical and experimental studies shed some light on the mechanisms of particle transport, but realistic geometries have not been investigated. In this study, a three dimensional expanding model including two generations of respiratory bronchioles and five terminal alveolar sacs was created from a replica human lung cast. Flow visualization techniques were employed to quantify the fluid flow while utilizing streamlines to evaluate recirculation. Pathlines were plotted to track the fluid motion and estimate penetration depth of inhaled air. This study provides evidence that the two generations immediately proximal to the terminal alveolar sacs do not have recirculating eddies, even for intense breathing. Results of Peclet number calculations indicate that substantial convective motion is present in vivo for the case of deep breathing, which significantly increases particle penetration into the alveoli. However, particle diffusion remains the dominant mechanism of particle transport over convection, even for intense breathing because inhaled particles do not reach the alveolar wall in a single breath by convection alone. Examination of the velocity fields revealed significant uneven ventilation of the alveoli during a single breath, likely due to variations in size and location. This flow field data, obtained from replica model geometry with realistic breathing conditions, provides information to better understand fluid and particle behavior in the acinus region of the lung.
机译:到达肺泡壁的吸入颗粒有可能穿过血气屏障并进入血流。然而,目前的全肺剂量模型无法解释肺剂量的实验证据。数值和实验研究为粒子传输的机理提供了一些线索,但尚未研究实际的几何形状。在这项研究中,从复制的人类肺管模型创建了三维扩展模型,其中包括两代呼吸细支气管和五个末端肺泡囊。流量可视化技术用于量化流体流量,同时利用流线评估再循环。绘制路径线以跟踪流体运动并估计吸入空气的渗透深度。这项研究提供的证据表明,即使对于剧烈呼吸,紧接在末端肺泡囊附近的两代人也没有再循环涡流。 Peclet数计算的结果表明,对于深呼吸,体内存在明显的对流运动,这大大增加了颗粒进入肺泡的渗透率。然而,即使对于剧烈呼吸,颗粒扩散仍然是对流过程中颗粒运输的主要机制,因为仅通过对流,一次吸入的吸入颗粒就不会到达肺泡壁。对速度场的检查显示,单次呼吸期间肺泡的通气明显不均匀,这很可能是由于大小和位置的变化所致。从具有逼真的呼吸条件的仿制模型几何体获得的流场数据可提供信息,以更好地了解肺的腺泡区域中的流体和颗粒行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号