首页> 外文期刊>Journal of Applied Mechanics: Transactions of the ASME >Crystal Plasticity Analysis of Stress Partitioning Mechanisms and Their Microstructural Dependence in Advanced Steels
【24h】

Crystal Plasticity Analysis of Stress Partitioning Mechanisms and Their Microstructural Dependence in Advanced Steels

机译:先进钢中应力分配机理的晶体可塑性分析及其微观结构依赖性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Two-phase advanced steels have an optimized combination of high yield strength and large elongation strain at failure, as a result of stress partitioning between a hard phase (martensite) and a ductile phase (ferrite or austenite). Provided with strong interfaces between the constituent phases, the failure in the brittle martensite phase will be delayed by the surrounding geometric constraints, while the rule of mixture will dictate a large strength of the composite. To this end, the microstructural design of these composites is imperative especially in terms of the stress partitioning mechanisms among the constituent phases. Based on the characteristic microstructures of dual phase and multilayered steels, two polycrystalline aggregate models are constructed to simulate the microscopic lattice strain evolution of these materials during uniaxial tensile tests. By comparing the lattice strain evolution from crystal plasticity finite element simulations with advanced in situ diffraction measurements in literature, this study investigates the correlations between the material microstructure and the micromechanical interactions on the intergranular and interphase levels. It is found that although the applied stress will be ultimately accommodated by the hard phase and hard grain families, the sequence of the stress partitioning on grain and phase levels can be altered by microstructural designs. Implications of these findings on delaying localized failure are also discussed.
机译:由于硬质相(马氏体)和韧性相(铁素体或奥氏体)之间的应力分配,两相高级钢具有高屈服强度和较大的断裂伸长应变的优化组合。在组成相之间具有强界面的情况下,脆性马氏体相的破坏将被周围的几何约束所延迟,而混合规则将决定复合材料的大强度。为此,这些复合材料的微观结构设计势在必行,尤其是在组成相之间的应力分配机制方面。基于双相钢和多层钢的特征微观结构,构建了两个多晶聚集体模型,以模拟这些材料在单轴拉伸试验中的微观晶格应变演化。通过比较文献中晶体可塑性有限元模拟的晶格应变演变与先进的原位衍射测量,本研究研究了材料微结构与晶间和相间水平上的微机械相互作用之间的相关性。发现虽然施加的应力最终将由硬相和硬晶粒家族所适应,但是通过微观组织设计可以改变应力在晶粒和相水平上的分配顺序。还讨论了这些发现对延迟局部失效的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号