首页> 外文期刊>Modelling and simulation in materials science and engineering >Combined crystal plasticity and grain boundary modeling of creep in ferritic-martensitic steels: II. The effect of stress and temperature on engineering and microstructural properties
【24h】

Combined crystal plasticity and grain boundary modeling of creep in ferritic-martensitic steels: II. The effect of stress and temperature on engineering and microstructural properties

机译:铁素质 - 马氏体钢蠕变晶体塑性与晶界模拟:II。 应力和温度对工程和微观结构性质的影响

获取原文
获取原文并翻译 | 示例
           

摘要

This paper describes a series of physically-based crystal plasticity finite element method (CPFEM) simulations of long-term creep and creep rupture of Grade 91 steel. It is Part 2 of a two part series of papers. Part 1 describes the simulation framework; this part focuses on specific simulations and on how the predicted long-term creep properties of Grade 91 compare to the assumptions used in current high temperature design practices. This work extends the model developed in Part 1 to look at creep properties at different temperatures, principal stresses, and multiaxial stress states. The simulations show that empirically extrapolating creep rupture stresses from short-term experimental data may substantially over predict the actual long-term creep properties of Grade 91. Additionally, the CPFEM calculations predict a transition from notch strengthening creep behavior for high values of maximum principal stress and moderate notch severity to notch weakening behavior for low principal stresses and more severe notches. The latter regime better categorizes conditions in engineering components designed for long term elevated temperature use, which implies Grade 91 may be a notch weakening material in actual service. This would have a significant impact on high temperature design practices, though confirmatory test data on long-life, low stress notched specimens is difficult to obtain. Finally, one advantage of the physically-based modeling approach adopted here is that the simulation results also elucidate the microstructural mechanisms causing the macroscopic trends in engineering properties predicted by the simulations. This paper shows that the detailed micromechanical mechanisms predicted by the CPFEM simulations can be abstracted with a simple micromechanical model that can be used to both explain the detailed results and make improved predictions of engineering properties from experimental data.
机译:本文介绍了一系列物理基础的晶体塑性有限元方法(CPFEM)模拟的长期蠕变和91级钢蠕变破裂。它是两部分系列纸的第2部分。第1部分描述了模拟框架;该部分侧重于特定的模拟,以及91年级的预测长期蠕变特性与当前高温设计实践中使用的假设进行比较。该工作扩展了第1部分开发的模型,以查看不同温度,主应力和多轴应力状态的蠕变性质。模拟表明,从短期实验数据中的经验外推蠕变破裂应力可以基本上超越预测91年级的实际长期蠕变性质。另外,CPFEM计算预测了从陷波强化蠕变行为的转变,以获得最大主要压力的高值和中度陷波的严重程度陷入困境的低密度应力和更严重的缺口。后者制度更好地对设计用于长期高温使用的工程部件中的条件,这意味着91级可以是实际服务中的凹口弱化材料。这对高温设计实践产生了重大影响,尽管对长寿命的确认测试数据,难以获得低应力缺口标本。最后,这里采用的物理基于建模方法的一个优点是仿真结果还阐明了导致模拟预测的工程性质中宏观趋势的微观结构机制。本文表明,CPFEM模拟预测的详细微机械机制可以用简单的微机械模型抽象,可用于解释详细结果并从实验数据中改进了工程性质的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号