...
首页> 外文期刊>Journal of biological inorganic chemistry: JBIC: a publication of the Society of Biological Inorganic Chemistry >Coordinating subdomains of ferritin protein cages with catalysis and biomineralization viewed from the C_4 cage axes
【24h】

Coordinating subdomains of ferritin protein cages with catalysis and biomineralization viewed from the C_4 cage axes

机译:从C_4笼轴看,协调铁蛋白蛋白笼的亚结构域与催化作用和生物矿化作用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Integrated ferritin protein cage function is the reversible synthesis of protein-caged, solid Fe_2O_3?H_2O minerals from Fe~(2+) for metabolic iron concentrates and oxidant protection; biomineral order differs in different ferritin proteins. The conserved 432 geometric symmetry of ferritin protein cages parallels the subunit dimer, trimer, and tetramer interfaces, and coincides with function at several cage axes. Multiple subdomains distributed in the self-assembling ferritin nanocages have functional relationships to cage symmetry such as Fe~(2+) transport though ion channels (threefold symmetry), biomineral nucleation/order (fourfold symmetry), and mineral dissolution (threefold symmetry) studied in ferritin variants. On the basis of the effects of natural or synthetic subunit dimer cross-links, cage subunit dimers (twofold symmetry) influence iron oxidation and mineral dissolution. 2Fe~(2+)/O_2 catalysis in ferritin occurs in single subunits, but with cooperativity (n = 3) that is possibly related to the structure/function of the ion channels, which are constructed from segments of three subunits. Here, we study 2Fe~(2+) + O_2 protein catalysis (diferric peroxo formation) and dissolution of ferritin Fe_2O_3?H_2O biominerals in variants with altered subunit interfaces for trimers (ion channels), E130I, and external dimer surfaces (E88A) as controls, and altered tetramer subunit interfaces (L165I and H169F). The results extend observations on the functional importance of structure at ferritin protein twofold and threefold cage axes to show function at ferritin fourfold cage axes. Here, conserved amino acids facilitate dissolution of ferritin-protein-caged iron biominerals. Biological and nanotechnological uses of ferritin protein cage fourfold symmetry and solid-state mineral properties remain largely unexplored.
机译:整合的铁蛋白蛋白笼功能是可逆地从Fe〜(2+)合成蛋白笼罩的固态Fe_2O_3?H_2O矿物质,用于代谢铁精矿和氧化保护。不同的铁蛋白蛋白质的生物矿物质顺序也不同。保守的432铁蛋白蛋白笼的几何对称性平行于亚基二聚体,三聚体和四聚体界面,并且在几个笼轴上重合。自组装铁蛋白纳米笼中分布的多个亚域与笼形对称性具有功能关系,例如通过离子通道(三重对称性),生物矿物质成核/顺序(四重对称性)和矿物溶解(三重对称性)的Fe〜(2+)转运。在铁蛋白变体中。根据天然或合成的亚基二聚体交联的影响,笼型亚基二聚体(双重对称性)会影响铁的氧化和矿物溶解。铁蛋白中的2Fe〜(2 +)/ O_2催化发生在单个亚基中,但协同性(n = 3)可能与离子通道的结构/功能有关,离子通道是由三个亚基的片段构成的。在这里,我们研究了三聚体(离子通道),E130I和外部二聚体表面(E88A)的亚基界面发生了变化的变体中的2Fe〜(2+)+ O_2蛋白催化(二元过氧化物形成)和铁蛋白Fe_2O_3?H_2O生物矿物质的溶解。对照,并更改了四聚体亚基界面(L165I和H169F)。结果扩展了对铁蛋白蛋白的双重和三重笼轴的结构的功能重要性的观察,以显示在铁蛋白四重的笼轴上的功能。在这里,保守的氨基酸促进了铁蛋白蛋白笼罩的铁生物矿物质的溶解。铁蛋白笼的生物学和纳米技术用途具有四重对称性和固态矿物质性质,目前仍未开发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号