首页> 外文期刊>Journal of biological inorganic chemistry: JBIC: a publication of the Society of Biological Inorganic Chemistry >Fe2+ substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization
【24h】

Fe2+ substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization

机译:Fe2 +底物通过铁蛋白蛋白笼离子通道的转运影响酶活性和生物矿化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3 center dot H2O), by moving cytoplasmic Fe2+ through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O-2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe2+ movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP lambda (max)). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe3+-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells.
机译:铁蛋白,复杂的蛋白质纳米笼,通过将细胞质中的Fe2 +通过笼内离子通道移动到笼内包埋的酶(2Fe(2 +)/ O-2氧化还原酶)位点而形成铁蛋白生物矿化作用,从而形成内部铁氧矿物质(Fe2O3中心点H2O) 。铁蛋白酶活性的产物是二铁氧基络合物,其是矿物前体。来自三个笼状亚基中每个的保守的D127的羧酸氨基酸侧链伸入内部离子通道出口附近的铁蛋白离子通道中,因此可以将Fe2 +运动引导至内部酶位点。设计并分析了铁蛋白D127E,以探测内部离子通道开口附近的离子通道大小和羧酸根拥挤的特性。 Glu侧链在化学上等同于Asp侧链,但比Asp侧链长一个-CH 2。铁蛋白D127E组装到正常的蛋白质笼中,但在650 nm(DFPλ(max))下测量时,未观察到二铁过氧化物的形成(酶活性)。在较宽的非特异性Fe3 + -O吸收带的中部,在350 nm处测量的笼状生物矿物质形成较慢。野生型离子通道和铁蛋白D127E之间的结构差异(蛋白质X射线晶体学)与铁蛋白D127E酶活性的抑制有关,包括:(1)较窄的内部离子通道开口/孔; (2)离子通道蛋白质-金属结合位点的数量增加,以及(3)由于羧酸盐的拥挤导致离子通道静电的变化。离子通道大小和结构对铁蛋白活性的贡献反映了金属离子在离子通道中的运输在铁蛋白蛋白纳米笼和活细胞膜中均受到精确调节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号