首页> 外文期刊>Journal of Agricultural and Food Chemistry >Gelation of edible blue-green algae protein isolate (Spirulina platensis Strain Pacifica): thermal transitions, rheological properties, and molecular forces involved.
【24h】

Gelation of edible blue-green algae protein isolate (Spirulina platensis Strain Pacifica): thermal transitions, rheological properties, and molecular forces involved.

机译:食用蓝藻蛋白分离物(Spirulina platensis Strain Pacifica)的凝胶化:涉及的热转变,流变特性和分子力。

获取原文
获取原文并翻译 | 示例
       

摘要

Proteins isolated from blue-green algae Spirulina platensis strain Pacifica were characterized by visible absorption, differential scanning calorimetry (DSC), viscometry, and dynamic oscillatory rheological measurements. Unique thermal unfolding, denaturation, aggregation, and gelation of the algal protein isolate are presented. DSC analysis showed that thermal transitions occur at about 67 and 109 degrees C at neutral pH. Calcium chloride stabilized the quaternary structure against denaturation and shifted the transitions at higher temperatures. Viscometric studies of Spirulina protein isolate as a function of temperature showed that the onset of the viscosity increase is closely related to the dissociation-denaturation process. Lower viscosities were observed for the protein solutions dissolved at pH 9 due to an increased protein solubility. Solutions of Spirulina protein isolate form elastic gels during heating to 90 degrees C. Subsequent cooling at ambient temperatures caused a further pronounced increase in the elastic moduli and network elasticity. Spirulina protein isolate has good gelling properties with fairly low minimum critical gelling concentrations of about 1.5 and 2.5 wt % in 0.1 M Tris buffer, pH 7, and with 0.02 M CaCl(2) in the same buffer, respectively. It is suggested that mainly the interactions of exposed hydrophobic regions generate the molecular association, initial aggregation, and gelation of the protein isolate during the thermal treatment. Hydrogen bonds reinforce the network rigidity of the protein on cooling and further stabilize the structure of Spirulina protein gels but alone are not sufficient to form a network structure. Intermolecular sulfhydryl and disulfide bonds were found to play a minor role for the network strength of Spirulina protein gels but affect the elasticity of the structures formed. Both time and temperature at isothermal heat-induced gelation within 40-80 degrees C affect substantially the network formation and the development of elastic modulus of Spirulina protein gels. This is also attributed to the strong temperature dependence of hydrophobic interactions. The aggregation, denaturation, and gelation properties of Spirulina algal protein isolate are likely to be controlled from protein-protein complexes rather than individual protein molecules.
机译:从蓝藻螺旋藻菌株Pacifica分离出的蛋白质通过可见吸收,差示扫描量热法(DSC),粘度测定和动态振荡流变学测量进行表征。展示了藻蛋白分离物独特的热解折叠,变性,聚集和凝胶化。 DSC分析表明,在中性pH下,热转变发生在约67和109℃。氯化钙使四级结构稳定而不会变性,并在较高温度下转变了转变。螺旋藻蛋白分离物的粘度研究与温度的关系表明,粘度增加的开始与解离-变性过程密切相关。由于增加的蛋白质溶解度,观察到在pH 9下溶解的蛋白质溶液的粘度较低。螺旋藻蛋白分离物的溶液在加热至90摄氏度期间形成弹性凝胶。随后在环境温度下冷却导致弹性模量和网络弹性进一步明显增加。螺旋藻蛋白分离物具有良好的胶凝特性,在0.1 M Tris缓冲液(pH 7)中具有大约1.5和2.5 wt%的最低临界胶凝浓度,并且在同一缓冲液中分别具有0.02 M CaCl(2)。建议在热处理过程中,暴露的疏水区域的相互作用主要产生蛋白质分离物的分子缔合,初始聚集和胶凝。氢键增强了蛋白质在冷却时的网络刚性,并进一步稳定了螺旋藻蛋白质凝胶的结构,但仅不足以形成网络结构。发现分子间的巯基和二硫键对螺旋藻蛋白凝胶的网络强度影响较小,但会影响所形成结构的弹性。在40-80摄氏度之间的等温热诱导凝胶化过程中,时间和温度都会严重影响螺旋藻蛋白凝胶的网络形成和弹性模量的发展。这也归因于疏水相互作用的强烈温度依赖性。螺旋藻藻蛋白分离物的聚集,变性和胶凝特性很可能由蛋白-蛋白复合物而不是单个蛋白分子控制。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号