首页> 外文期刊>Chinese journal of mechanical engineering >Simulation study of aerodynamic force for high-speed magnetically-levitated trains
【24h】

Simulation study of aerodynamic force for high-speed magnetically-levitated trains

机译:高速磁悬浮列车空气动力的仿真研究

获取原文
获取原文并翻译 | 示例
       

摘要

Based on Reynolds average Navier-Storkes equations of viscous incompressible fluid and k-epsilon two equations turbulent model, the aerodynamic forces of high-speed magnetically-levitated (maglev) trains in transverse and longitudinal wind are investigated by finite volume method. Near 80 calculation cases for 2D transverse wind fields and 20 cases for 3D longitudinal wind fields are analyzed. The aerodynamic side force, yawing, drag, lift and pitching moment for different types of maglev trains and a wheel/rail train are compared under the different wind speeds. The types of maglev train models for 2D transverse wind analysis included electromagnetic suspension (EMS) type train, electrodynamic suspension (EDS) type train, EMS type train with shelter wind wall in one side or two sides of guideway and the walls, which are in different height or/and different distances from train body. The situation of maglev train running on viaduct is also analyzed. For 3D longitudinal wind field analysis, the model with different sizes of air clearances beneath maglev train is examined for the different speeds. Calculation result shows that: ① Different transverse effects are shown in different types of maglev trains. ② The shelter wind wall can fairly decrease the transverse effect on the maglev train. ③ When the shelter wall height is 2 m, there is minimum side force on the train. When the shelter wall height is 2.5 m, there is minimum yawing moment on the train. ④ When the distance between inside surfaces of the walls and center of guideway is 4.0 m, there is minimum transverse influence on the train, ⑤ The size of air clearance beneath train body has a small influence on aerodynamic drag of the train, but has a fairly large effect on aerodynamic lift and pitching moment of the train. ⑥ The calculating lift and pitching moment for maglev train models are minus values.
机译:基于粘性不可压缩流体的雷诺平均Navier-Storkes方程和k-ε方程两个湍流模型,通过有限体积法研究了高速磁悬浮(磁悬浮)列车在横向和纵向风中的空气动力。分析了近80个2D横向风场的计算案例和20个3D纵向风场的案例。比较了不同风速下不同类型的磁悬浮列车和车轮/铁路列车的空气动力学侧向力,偏航,阻力,升力和俯仰力矩。用于二维横向风分析的磁悬浮列车模型的类型包括电磁悬挂(EMS)型列车,电动悬挂(EDS)型列车,在导轨的一侧或两侧具有风挡壁的EMS型列车,并且这些壁位于与火车车体的高度不同或距离不同。分析了磁悬浮列车在高架桥上行驶的情况。对于3D纵向风场分析,将针对磁浮列车下方具有不同大小的空气间隙的模型检查不同的速度。计算结果表明:①不同类型的磁悬浮列车表现出不同的横向效应。 ②防风墙可以相当程度地减小对磁悬浮列车的横向影响。 ③当防护墙高度为2 m时,火车上的侧向力最小。当掩体墙高度为2.5 m时,火车上的偏航力矩最小。 ④当墙壁内表面与导轨中心之间的距离为4.0 m时,对火车的横向影响最小。⑤火车主体下方的空气间隙大小对火车的空气阻力影响较小,但对火车的空气阻力有影响。对火车的空气动力升力和俯仰力矩的影响相当大。 ⑥磁悬浮列车模型的升力和俯仰力矩为负值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号