首页> 外文期刊>Discrete mathematics, algorithms, and applications >P_5-FACTORIZATION OF CARTESIAN PRODUCT OF GRAPHS
【24h】

P_5-FACTORIZATION OF CARTESIAN PRODUCT OF GRAPHS

机译:P_5-图的笛卡尔积

获取原文
获取原文并翻译 | 示例

摘要

Partition of G into edge-disjoint H-factors is called H-factorization of G. Muthusamy and Paulraja have conjectured that for k ≥ 3, K_m□K_n has a P_k-factorization if and only if. mn = 0 (mod k) and k(m+n — 2)≡ 0 (mod 2(k — 1)), where □ denote cartesian product of graphs. In this paper, it is shown that the necessary conditions mn ≡ 0 (mod 5) and 5(m + 1) = 0 (mod 8) are sufficient for the existence of a P_5-factorization of K_m?C_n when (i) m = 7, n = 0 (mod 5), (ii) m = 175 (mod 280), n = 0 (mod 5). Further, it is shown that the necessary conditions mn ≡ 0 (mod 5) and 5(m + n — 2) ≡ 0 (mod 8) are sufficient for the existence of a P_5-factorization of Km?K_n in the following cases: (i) ≡ 5 (mod 40), n ≡ 5 (mod 40), (ii) m ≡ 10 (mod 40), n ≡ 0 (mod 40), (iii) m ≡ 15 (mod 120),n = 3 and m ≡ 15 (mod 120), n ≡ 75 (mod 120), (iv) m ≡ 20 (mod 40), n ≡ 30 (mod 120), (V) m ≡ 25 (mod 40), n ≡ 25 (mod 40), (vi) m ≡ 30 (mod 120), n = 4 and m ≡ 30 (mod 120), n ≡ 20 (mod 40),(vii) m ≡ 75 (mod 120), n ≡ 15 (mod 120), (viii) m ≡ 0 (mod 40), n = 2 and m ≡ 0 (mod 40), n ≡ 10 (mod 40). In fact our results partially answer the above conjecture when k = 5.
机译:将G划分为边不相交的H因子称为G的H因子分解。Muthusamy和Paulraja推测,当且仅当k≥3时,K_m□K_n具有P_k因子分解。 mn = 0(mod k)和k(m + n_2)≡0(mod 2(k_1)),其中□表示图的笛卡尔积。本文表明,当(i)m时,存在必要的条件mn≡0(mod 5)和5(m +1)= 0(mod 8)足以存在K_m?C_n的P_5因式分解= 7,n = 0(mod 5),(ii)m = 175(mod 280),n = 0(mod 5)。此外,表明在以下情况下,对于存在Km?K_n的P_5分解,必要条件mn≡0(mod 5)和5(m + n_2)≡0(mod 8)足够: (i)≡5(mod 40),n≡5(mod 40),(ii)m≡10(mod 40),n≡0(mod 40),(iii)m≡15(mod 120),n = 3和m≡15(mod 120),n≡75(mod 120),(iv)m≡20(mod 40),n≡30(mod 120),(V)m≡25(mod 40),n and 25(mod 40),(vi)m≡30(mod 120),n = 4和m≡30(mod 120),n≡20(mod 40),(vii)m≡75(mod 120),n≡ 15(mod 120),(viii)m≡0(mod 40),n = 2和m≡0(mod 40),n≡10(mod 40)。实际上,当k = 5时,我们的结果部分地回答了上述猜想。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号