...
首页> 外文期刊>Human Molecular Genetics >DNMT3B interacts with constitutive centromere protein CENP-C to modulate DNA methylation and the histone code at centromeric regions.
【24h】

DNMT3B interacts with constitutive centromere protein CENP-C to modulate DNA methylation and the histone code at centromeric regions.

机译:DNMT3B与组成型着丝粒蛋白CENP-C相互作用,调节着丝粒区域的DNA甲基化和组蛋白编码。

获取原文
获取原文并翻译 | 示例
           

摘要

DNA methylation is an epigenetically imposed mark of transcriptional repression that is essential for maintenance of chromatin structure and genomic stability. Genome-wide methylation patterns are mediated by the combined action of three DNA methyltransferases: DNMT1, DNMT3A and DNMT3B. Compelling links exist between DNMT3B and chromosome stability as emphasized by the mitotic defects that are a hallmark of ICF syndrome, a disease arising from germline mutations in DNMT3B. Centromeric and pericentromeric regions are essential for chromosome condensation and the fidelity of segregation. Centromere regions contain distinct epigenetic marks, including dense DNA hypermethylation, yet the mechanisms by which DNA methylation is targeted to these regions remains largely unknown. In the present study, we used a yeast two-hybrid screen and identified a novel interaction between DNMT3B and constitutive centromere protein CENP-C. CENP-C is itself essential for mitosis. We confirm this interaction in mammalian cells and map the domains responsible. Using siRNA knock downs, bisulfite genomic sequencing and ChIP, we demonstrate for the first time that CENP-C recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and that CENP-C and DNMT3B regulate the histone code in these regions, including marks characteristic of centromeric chromatin. Finally, we demonstrate that loss of CENP-C or DNMT3B leads to elevated chromosome misalignment and segregation defects during mitosis and increased transcription of centromeric repeats. Taken together, our data reveal a novel mechanism by which DNA methylation is targeted to discrete regions of the genome and contributes to chromosomal stability.
机译:DNA甲基化是转录抑制的表观遗传学标记,对于维持染色质结构和基因组稳定性至关重要。全基因组范围的甲基化模式由三种DNA甲基转移酶DNMT1,DNMT3A和DNMT3B的联合作用介导。 DNMT3B和染色体稳定性之间存在令人信服的联系,这是有丝分裂缺陷所强调的,这是ICF综合征的标志,ICF综合征是由DNMT3B的种系突变引起的疾病。着丝粒和着丝粒区域对于染色体浓缩和分离的保真度至关重要。着丝粒区域包含明显的表观遗传标记,包括致密的DNA高度甲基化,但是将DNA甲基化靶向这些区域的机制仍然未知。在本研究中,我们使用了酵母双杂交筛选,并确定了DNMT3B与本构着丝粒蛋白CENP-C之间的新型相互作用。 CENP-C本身对于有丝分裂必不可少。我们确认这种相互作用在哺乳动物细胞中,并映射负责任的领域。使用siRNA敲低,亚硫酸氢盐基因组测序和ChIP,我们首次证明CENP-C将DNA甲基化和DNMT3B募集到着丝粒和着丝粒卫星重复序列中,并且CENP-C和DNMT3B调节了这些区域中的组蛋白代码,包括标记着丝粒染色质的特征最后,我们证明了CENP-C或DNMT3B的缺失会导致有丝分裂期间染色体错位和分离缺陷的升高,以及着丝粒重复序列的转录增加。综上所述,我们的数据揭示了一种新颖的机制,通过这种机制,DNA甲基化靶向基因组的离散区域并有助于染色体的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号