...
首页> 外文期刊>Human Molecular Genetics >Mislocalization of neuronal mitochondria reveals regulation of wallerian degeneration and NMNAT/ WLDS-mediated axon protection independent of axonal mitochondria
【24h】

Mislocalization of neuronal mitochondria reveals regulation of wallerian degeneration and NMNAT/ WLDS-mediated axon protection independent of axonal mitochondria

机译:神经元线粒体的错误定位揭示瓦勒变性和NMNAT / WLDS介导的轴突保护的调节独立于轴突线粒体。

获取原文
获取原文并翻译 | 示例
           

摘要

Axon degeneration is a common and often early feature of neurodegeneration that correlates with the clinical manifestations and progression of neurological disease. Nicotinamide mononucleotide adenylytransferase (NMNAT) is a neuroprotective factor that delays axon degeneration following injury and in models of neurodegenerative diseases suggesting a converging molecular pathway of axon self-destruction. The underlying mechanisms have been under intense investigation and recent reports suggest a central role for axonal mitochondria in both degeneration and NMNAT/WLDS (Wallerian degeneration slow)-mediated protection. We used dorsal root ganglia (DRG) explants and Drosophila larval motor neurons (MNs) as models to address the role of mitochondria in Wallerian degeneration (WD). We find that expression of Drosophila NMNAT delays WD in human DRG neurons demonstrating evolutionary conservation of NMNAT function. Morphological comparison of mitochondria from WLDS-protected axons demonstrates that mitochondria shrink post-axotomy, though analysis of complex IV activity suggests that they retain their functional capacity despite this morphological change. To determine whether mitochondria are a critical site of regulation for WD, we genetically ablated mitochondria from Drosophila MN axons via the mitochondria trafficking protein milton. Milton loss-of-function did not induce axon degeneration in Drosophila larval MNs, and when axotomized WD proceeded stereotypically in milton distal axons although with a mild, but significant delay. Remarkably, the protective effects of NMNAT/WLDS were also maintained in axons devoid of mitochondria. These experiments unveil an axon self-destruction cascade governing WD that is not initiated by axonal mitochondria and for the first time illuminate a mitochondria-independent mechanism(s) regulating WD and NMNAT/WLDS-mediated axon protection.
机译:轴突变性是神经变性的常见且通常是早期特征,其与神经疾病的临床表现和进展相关。烟酰胺单核苷酸腺苷酸转移酶(NMNAT)是一种神经保护因子,可延缓损伤后的轴突变性,在神经退行性疾病模型中,提示轴突自我毁灭的分子途径不断收敛。潜在的机制已经进行了深入的研究,最近的报道表明轴突线粒体在变性和NMNAT / WLDS(Wallerian变性慢)介导的保护中起着核心作用。我们使用背根神经节(DRG)外植体和果蝇幼虫运动神经元(MNs)作为模型来研究线粒体在瓦勒变性(WD)中的作用。我们发现,果蝇NMNAT的表达延迟人DRG神经元中的WD,这表明了NMNAT功能的进化保守性。线粒体与WLDS保护的轴突的形态学比较表明,轴突切除后线粒体收缩,尽管对复杂IV活性的分析表明,尽管发生了这种形态变化,线粒体仍保留了其功能能力。为了确定线粒体是否是WD调节的关键部位,我们通过线粒体运输蛋白milton从果蝇MN轴突中遗传去除了线粒体。 Milton功能丧失并没有在果蝇幼虫MNs中引起轴突变性,并且当采用线切开的WD在milton远端轴突中进行刻板印象时,虽然有轻度但明显的延迟。值得注意的是,在没有线粒体的轴突中也保持了NMNAT / WLDS的保护作用。这些实验揭示了不是由轴突线粒体引发的控制WD的轴突自毁级联反应,并且首次阐明了调节WD和NMNAT / WLDS介导的轴突保护的线粒体独立机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号