...
首页> 外文期刊>High energy density physics >The Braginskii model of the Rayleigh-Taylor instability. I. Effects of self-generated magnetic fields and thermal conduction in two dimensions
【24h】

The Braginskii model of the Rayleigh-Taylor instability. I. Effects of self-generated magnetic fields and thermal conduction in two dimensions

机译:Rayleigh-Taylor不稳定性的Braginskii模型。 I.二维自生磁场和热传导的影响

获取原文
获取原文并翻译 | 示例
           

摘要

There exists a substantial disagreement between computer simulation results and high-energy density laboratory experiments of the Rayleigh-Taylor instability [1]. Motivated by the observed discrepancies in morphology and growth rates, we attempt to bring simulations and experiments into better agreement by extending the classic purely hydrodynamic model to include self-generation of magnetic fields and anisotropic thermal conduction. We adopt the Braginskii formulation for transport in hot, dense plasma, implement and verify the additional physics modules, and conduct a computational study of a single-mode RTI in two dimensions with various combinations of the newly implemented modules. We analyze physics effects on the RTI mixing and flow morphology, the effects of mutual physics interactions, and the evolution of magnetic fields. We find that magnetic fields reach levels on the order of 11MG (plasma β≈9.1×10-2) in the absence of thermal conduction. These fields do not affect the growth of the mixed layer but substantially modify its internal structure on smaller scales. In particular, we observe denting of the RT spike tip and generation of additional higher order modes as a result of these fields. Contrary to interpretation presented in earlier work [2], the additional mode is not generated due to modified anisotropic heat transport effects but due to dynamical effect of self-generated magnetic fields. The overall flow morphology in self-magnetized, non-conducting models is qualitatively different from models with a pre-existing uniform field oriented perpendicular to the interface. This puts the usefulness of simple MHD models for interpreting the evolution of self-magnetizing HED systems with zero-field initial conditions into doubt. The main effects of thermal conduction are a reduction of the RT instability growth rate (by about 20% for conditions considered here) and inhibited mixing on small scales. In this case, the maximum self-generated magnetic fields are weaker (approximately 1.7MG; plasma β≈49). This is due to reduction of temperature and density gradients due to conduction. These self-generated magnetic fields are of very similar strength compared to magnetic fields observed recently in HED laboratory experiments [3].We find that thermal conduction plays the dominant role in the evolution of the model RTI system considered. It smears out small-scale structure and reduces the RTI growth rate. This may account for the relatively featureless RT spikes seen in experiments, but does not explain mass extensions observed in experiments. Resistivity, related heat source terms and the thermo-electric contribution to the heat flow were not included in the present work. We estimate their impact on RTI as modest and not affecting our main conclusions. These effects will be discussed in detail in the next paper in the series.
机译:在计算机模拟结果与瑞利-泰勒不稳定性的高能密度实验室实验之间存在很大的分歧[1]。受观察到的形态和生长速率差异的影响,我们试图通过将经典的纯流体动力学模型扩展到包括磁场的自生和各向异性的热传导,使模拟和实验更好地吻合。我们采用Braginskii公式在热的稠密等离子体中传输,实现并验证其他物理模块,并使用新实现的模块的各种组合进行二维单模RTI的计算研究。我们分析了物理对RTI混合和流动形态的影响,相互之间的相互作用以及磁场的演化。我们发现,在没有热传导的情况下,磁场达到的水平约为11MG(等离子β≈9.1×10-2)。这些场不影响混合层的生长,而是在较小规模上实质性地改变其内部结构。特别是,由于这些场,我们观察到了RT尖峰的凹陷以及其他高阶模的产生。与早期工作[2]中提出的解释相反,附加模式不是由于修正的各向异性热传递效应而产生的,而是由于自生磁场的动力学效应而产生的。自磁化非导电模型中的整体流动形态与定性垂直于界面的均匀磁场的模型在质量上有所不同。这使简单的MHD模型在解释具有零场初始条件的自磁化HED系统的演化方面的有用性受到质疑。导热的主要作用是降低RT不稳定性的增长率(对于此处考虑的条件,降低约20%)并抑制小规模的混合。在这种情况下,最大的自生磁场较弱(约1.7MG;等离子体β≈49)。这是由于导电导致的温度和密度梯度降低。与最近在HED实验室实验中观察到的磁场相比,这些自生磁场的强度非常相似[3]。我们发现,热传导在所考虑的RTI系统的演化中起着主导作用。它会抹去小规模的结构并降低RTI的增长率。这也许可以解释实验中观察到的相对无特征的RT峰,但不能解释实验中观察到的质量扩展。电阻率,相关的热源项和热电对热流的贡献不包括在本研究中。我们估计它们对RTI的影响很小,并且不会影响我们的主要结论。这些影响将在本系列的下一篇文章中详细讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号