...
首页> 外文期刊>Weather and forecasting >Effective storm-relative helicity and bulk shear in supercell thunderstorm environments
【24h】

Effective storm-relative helicity and bulk shear in supercell thunderstorm environments

机译:超级单体雷暴环境中有效的风暴相对螺旋度和体剪切

获取原文
获取原文并翻译 | 示例

摘要

A sample of 1185 Rapid Update Cycle ( RUC) model analysis ( 0 h) proximity soundings, within 40 km and 30 min of radar-identified discrete storms, was categorized by several storm types: significantly tornadic supercells (F2 or greater damage), weakly tornadic supercells (F0-F1 damage), nontornadic supercells, elevated right-moving supercells, storms with marginal supercell characteristics, and nonsupercells. These proximity soundings served as the basis for calculations of storm-relative helicity and bulk shear intended to apply across a broad spectrum of thunderstorm types. An effective storm inflow layer was defined in terms of minimum constraints on lifted parcel CAPE and convective inhibition (CIN). Sixteen CAPE and CIN constraint combinations were examined, and the smallest CAPE ( 25 and 100 J kg(-1)) and largest CIN (-250 J kg(-1)) constraints provided the greatest probability of detecting an effective inflow layer within an 835-supercell subset of the proximity soundings. Effective storm-relative helicity (ESRH) calculations were based on the upper and lower bounds of the effective inflow layer. By confining the SRH calculation to the effective inflow layer, ESRH values can be compared consistently across a wide range of storm environments, including storms rooted above the ground. Similarly, the effective bulk shear (EBS) was defined in terms of the vertical shear through a percentage of the "storm depth," as defined by the vertical distance from the effective inflow base to the equilibrium level associated with the most unstable parcel ( maximum theta(e) value) in the lowest 300 hPa. ESRH and EBS discriminate strongly between various storm types, and between supercells and nonsupercells, respectively.
机译:在雷达识别的离散风暴的40 km和30分钟内,对1185个快速更新周期(RUC)模型分析(0小时)近距离探测的样本按以下几种风暴类型进行了分类:明显的旋流超级单体(F2或更大的破坏),弱的旋风式超级电池(F0-F1损坏),非旋风式超级电池,升高的右移式超级电池,具有边缘式超级电池特性的风暴和非超级电池。这些邻近的测深作为计算相对风暴的螺旋度和大剪切力的基础,旨在适用于广泛的雷暴类型。有效的风暴流入层是根据对包裹CAPE的最小约束和对流抑制(CIN)定义的。检验了16种CAPE和CIN约束组合,最小的CAPE(25和100 J kg(-1))和最大的CIN(-250 J kg(-1))约束提供了最大的概率,可以检测到一个有效的流入层。邻近探测的835个超级单元子集。有效风暴相对螺旋度(ESRH)的计算基于有效流入层的上限和下限。通过将SRH计算限制在有效流入层,可以在广泛的暴风雨环境中(包括扎根于地面的暴风雨)一致地比较ESRH值。同样,有效体积剪力(EBS)的定义是通过“风暴深度”的百分比进行的垂直剪力,即从有效流入量到与最不稳定包裹相关的平衡水平的垂直距离(最大theta(e)值)在最低的300 hPa中。 ESRH和EBS分别区分各种风暴类型以及超级小区和非超级小区。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号