首页> 外文期刊>Surface & Coatings Technology >Characterization of cascade arc assisted CVD diamond coating technology - Part I. Plasma processing parameters
【24h】

Characterization of cascade arc assisted CVD diamond coating technology - Part I. Plasma processing parameters

机译:级联电弧辅助CVD金刚石涂层技术的表征-第一部分。等离子处理参数

获取原文
获取原文并翻译 | 示例
           

摘要

Cascade arc plasma-assisted CVD (CACVD) technology is based on an innovative reactor design which utilizes the properties of a linear-arc plasma column. While operating in the same pressure range, from 0.1 Torr up to atmospheric pressure, the CACVD reactor overcomes the disadvantages of conventional Arc Torch CVD reactors by creating a homogeneous concentrated plasma column in a cylindrical or rectangular reaction chamber with a length of I no or more. Substrate holders are configured to act as a virtual liner confining the arc in a channel containing the substrates. In the CACVD reactor channel, an arc plasma is shaped by magnetic fields, creating a uniform plasma environment over extended lengths. It has been used to deposit polycrystalline diamond and related coatings on 3D substrates. In the cascade arc process, the temperature gradient and flow of energy are directed transversal to the hydrodynamic flow, which allows protection of the deposition area from direct impact with high-speed plasma flow. In high temperature CACVD processes, the temperature of substrates is determined by the balance between energy flow conveyed from the plasma column, radiative losses, and heat removal through cooling of the substrate holders and reactor wall. Precise control of the substrate temperature in high temperature CVD processes is critical for depositing polycrystalline diamond coatings. Composite powder variable conductance insulation (CPVCI) has been developed to control substrate temperature during deposition of polycrystalline diamond coatings in the CACVD reactor. Direct measurements of the substrate temperature vs. incoming energy flow from arc plasma allow estimation of the thermal balance of the substrates. The voltage-ampere characteristics as well as plasma transfer processes in an Ar-H-2-CH4 cascade arc in relation to the thermal balance of substrates and deposition rate of polycrystalline diamond coatings are discussed. (c) 2004 Elsevier B.V. All rights reserved.
机译:级联电弧等离子体辅助CVD(CACVD)技术基于创新的反应器设计,该设计利用了线性电弧等离子体柱的特性。在从0.1Torr到大气压的相同压力范围内运行时,CACVD反应器通过在圆柱形或矩形反应室中创建长度为I no或更大的均质浓缩等离子体柱,克服了常规Arc Torch CVD反应器的缺点。 。基板支架被配置为充当虚拟衬里,以将电弧限制在包含基板的通道中。在CACVD反应器通道中,电弧等离子体受到磁场的影响,从而在延伸的长度范围内形成均匀的等离子体环境。它已用于在3D基材上沉积多晶金刚石和相关涂层。在级联电弧工艺中,温度梯度和能量流被定向为横向于流体动力学流,这允许保护沉积区域免受高速等离子体流的直接冲击。在高温CACVD工艺中,基板的温度取决于从等离子柱传输的能量流,辐射损耗以及通过冷却基板支架和反应器壁而散发出的热量之间的平衡。在高温CVD工艺中精确控制基板温度对于沉积多晶金刚石涂层至关重要。已开发出复合粉末可变电导绝缘体(CPVCI),以在CACVD反应器中沉积多晶金刚石涂层的过程中控制基底温度。直接测量基板温度与来自电弧等离子体的进入能量流之间的关系可以估算基板的热平衡。讨论了Ar-H-2-CH4级联电弧中的电压-安培特性以及等离子体转移过程,与基材的热平衡和多晶金刚石涂层的沉积速率有关。 (c)2004 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号