首页> 外文期刊>The Journal of Physiology >Dissociation between sensing and metabolism of glucose in sugar sensing neurones.
【24h】

Dissociation between sensing and metabolism of glucose in sugar sensing neurones.

机译:糖感测神经元中葡萄糖的感测与代谢之间的分离。

获取原文
获取原文并翻译 | 示例
           

摘要

Some of the neurones controlling sleep, appetite and hormone release act as specialized detectors of ambient glucose. Their sugar sensing is conventionally thought to involve glucokinase-dependent metabolism of glucose to ATP, which then alters membrane excitability by modulating ATP-dependent channels or transporters, such as ATP-inhibited K(+) channels (K(ATP)). However, recent studies also provide examples of both glucose-excited (GE) and glucose-inhibited (GI) neurones that sense glucose independently of such metabolic pathways. Two-thirds of hypothalamic GE neurones in primary cultures are also excited by the non-metabolizable glucose analogue alpha-methylglucopyranoside (alpha-MDG), which acts as a substrate for electrogenic (depolarizing) sodium-glucose cotransporter (SGLT). The excitatory responses to both glucose and alpha-MDG are abolished by arresting SGLT activity by sodium removal or the SGLT inhibitor phloridzin. Direct depolarization and excitation by glucose-triggered SGLT activity may ensure that GE neurones continue to sense glucose in 'high-energy' states, when K(ATP) channels are closed. A major class of hypothalamic GI neurones, the orexin/hypocretin cells, also appear to use a non-metabolic sensing strategy. In these cells, glucose-induced hyperpolarization and inhibition are unaffected by glucokinase inhibitors such as alloxan, d-glucosamine, and N-acetyl-d-glucosamine, and mimicked by the non-metabolizable glucose analogue 2-deoxyglucose, but not by stimulating intracellular ATP production with lactate. The dissociation between sensing and metabolism of sugar may allow the brain to predict and prevent adverse changes in extracellular glucose levels with minimal impact on the flow of intracellular fuel.
机译:控制睡眠,食欲和激素释放的某些神经元可作为环境葡萄糖的专门检测器。通常认为,它们的糖感涉及葡萄糖转化为ATP的葡萄糖激酶依赖性代谢,然后通过调节ATP依赖性通道或转运蛋白(例如ATP抑制的K(+)通道(K(ATP)))来改变膜的兴奋性。但是,最近的研究也提供了葡萄糖激发(GE)和葡萄糖抑制(GI)神经元的例子,这些神经元独立于这种代谢途径来感应葡萄糖。不可培养的葡萄糖类似物α-甲基葡萄糖吡喃糖苷(α-MDG)也激发了原代培养物中三分之二的下丘脑GE神经元,该葡萄糖类似物用作电(去极化)钠-葡萄糖共转运蛋白(SGLT)的底物。通过除去钠或SGLT抑制剂phloridzin抑制SGLT活性,消除了对葡萄糖和α-MDG的兴奋性反应。当K(ATP)通道关闭时,通过葡萄糖触发的SGLT活性进行的直接去极化和激发作用可确保GE神经元在“高能”状态下继续感测葡萄糖。下丘脑GI神经元的主要类别,即食欲素/促胰泌素细胞,似乎也使用非代谢的传感策略。在这些细胞中,葡萄糖诱导的超极化和抑制不受葡萄糖激酶抑制剂(例如四氧嘧啶,d-葡萄糖胺和N-乙酰基-d-葡萄糖胺)的影响,并被不可代谢的葡萄糖类似物2-脱氧葡萄糖模拟,但不刺激细胞内乳酸产生ATP。糖的传感与代谢之间的分离可以使大脑预测并预防细胞外葡萄糖水平的不利变化,而对细胞内燃料的流动影响最小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号