...
首页> 外文期刊>Frontiers in Integrative Neuroscience >Commentary: Sugar Metabolism Regulates Flavor Preferences and Portal Glucose Sensing
【24h】

Commentary: Sugar Metabolism Regulates Flavor Preferences and Portal Glucose Sensing

机译:评论:糖代谢调节风味偏好和门禁葡萄糖感测

获取原文
           

摘要

In an interesting paper by Zhang et al. ( 2018 ), flavor conditioning effects of intragastric (IG) infusions of glucose and a non-metabolizable glucose analog (α-methyl-D-glucopyranoside, MDG) were compared in mice. Infusions of both sugars during one-bottle training stimulated intake of their associated flavored non-nutritive drinks compared to control mice infused with water. This confirmed Zukerman et al. ( 2013a ), who reported that glucose and MDG not only stimulated intake but also conditioned flavor preferences relative to a water-paired flavor. In contrast, IG infusion of fructose did not stimulate intake or condition a flavor preference. Glucose and MDG, unlike fructose, are ligands for intestinal sodium glucose co-transporters/sensors (SGLTl, SGLT3), which implicates these sensors in flavor conditioning. Pharmacological blockade of SGLTs prevented MDG conditioning, whereas blockade of both SGLTs and GLUT2 was required to prevent glucose conditioning. In another study, genetic deletion of SGLT1 blocked MDG and glucose flavor preference conditioning (Sclafani et al., 2016 ). Zhang et al. ( 2018 ) reported that mice preferred a glucose-paired flavor over an MDG-paired flavor in a direct choice test. The same result was observed in duodenal bypass mice in which the IG sugar infusions emptied into the jejunum, which the authors took as evidence for a post-absorptive glucose action. In support of this view, hepatic-portal vein infusions of glucose, but not MDG, increased extracellular dopamine in ventral and dorsal striatum. They concluded that portal sensing of glucose metabolism via the hepatoportal-brain neural axis is the “preferential physiological pathway for sugar reward” and excluded a role for circulating “gut factors.” These conclusions, however, are not fully supported by findings of other investigators. In rats, duodenal and jejunal glucose infusions conditioned similar flavor preference whereas ileal infusions were ineffective; yet infusions at all three sites increased blood glucose levels (Ackroff et al., 2010 ). Furthermore, portal glucose infusions in rats did not condition preferences for flavored saccharin solutions, nor did intraperitoneal glucose infusions in mice (Ackroff et al., 2010 ; Zukerman et al., 2013b ). Thus, elevation in circulating glucose, by itself, is not an adequate stimulus for flavor conditioning. However, portal glucose infusions conditioned a preference for flavored chow (Tordoff and Friedman, 1986 ), which suggests that portal glucose is an effective conditioning stimulus when combined with pre-absorptive nutrient stimulation. Consistent with this interpretation, portal glucose infusions conditioned preferences for flavored glucose but not for flavored saccharin solutions (Gowans, 1992 ; Ackroff et al., 2010 ). These results do not support the primacy of portal glucose sensing in post-oral sugar reinforcement but suggest instead that portal sensing enhances the reinforcement actions of intestinal glucose sensing. Ren et al. ( 2010 ) reported that IG glucose infusions increased striatal dopamine release. Thus, the enhanced flavor conditioning produced by glucose may result because the pre- and post-absorptive actions of the sugar promote a greater dopamine response than does the pre-absorptive action of MDG. The conditioning actions of the non-metabolizable MDG may also be limited by its accumulation in intestinal cells: unlike glucose, MDG is not actively transported out of the cells by GLUT2. Consistent with this possibility, as the concentration of IG infused sugar increased, MDG-conditioned preferences decreased whereas glucose-conditioned preferences increased (Zukerman et al., 2013b ). Zhang et al. ( 2018 ) assumed that portal glucose metabolism generated a signal that triggered striatal dopamine release. This may be the case, but it should be noted that the hepatic-portal region contains glucose sensors, including SGLT3, which can detect glucose independent of its metabolism (Mithieux, 2014 ). Portal MDG infusions did not stimulate dopamine release, which excludes SGLT3 in this response. The GLUT2 glucose transporter is also implicated in portal glucose sensing which may be secondary to increased glucose metabolism, but a direct role for GLUT2 as a glucose sensor cannot be excluded (Thorens, 2015 ). Thus, it remains to be determined whether portal glucose stimulation of striatal dopamine is secondary to glucose metabolism. How reinforcing signals, generated by peripheral glucose and MDG, reach the brain is uncertain. Zhang et al. ( 2018 ) dismissed gut circulating factors and implicated a hepatoportal-brain neural pathway. But they failed to consider reports that disrupting neural afferents by abdominal vagotomy, selective afferent vagotomy, or capsaicin treatment did not block glucose-conditioned flavor preferences (Lucas and Sclafani, 1996 ; Sclafani and Lucas, 1996 ; Sclafani et al., 2003 ; Zukerman et al., 2011 ). In addition, vagotomy does not preven
机译:在Zhang等人的有趣论文中。 (2018),比较了小鼠胃内(IG)输注葡萄糖和不可代谢的葡萄糖类似物(α-甲基-D-吡喃葡萄糖苷,MDG)的风味调节效果。与注水的对照小鼠相比,在单瓶训练期间输注两种糖刺激了其相关风味非营养饮料的摄入。这证实了祖克曼等人。 (2013a),他报道了葡萄糖和MDG不仅刺激了摄入量,而且相对于水配对风味剂,还调节了风味偏好。相比之下,果糖的IG输注并不会刺激摄入或调节口味偏爱。葡萄糖和MDG与果糖不同,是肠道钠葡萄糖共转运蛋白/传感器(SGLT1,SGLT3)的配体,这将这些传感器牵涉到风味调节中。 SGLTs的药理学阻断作用阻止了MDG调节,而SGLTs和GLUT2的阻断作用都需要阻止葡萄糖调节作用。在另一项研究中,SGLT1的基因缺失阻止了MDG和葡萄糖风味偏好调节(Sclafani等,2016)。张等。 (2018)报道,在直接选择测试中,小鼠更喜欢葡萄糖配对的口味而不是MDG配对的口味。在十二指肠旁路小鼠中观察到了相同的结果,其中将IG糖注入空肠中,作者将其作为吸收后葡萄糖作用的证据。支持该观点的是,肝门静脉输注葡萄糖而不是MDG会增加腹侧和背侧纹状体中的细胞外多巴胺。他们得出结论,通过肝门脑神经轴进行葡萄糖代谢的门脉传感是“获得糖分奖励的首选生理途径”,并且排除了循环“肠因子”的作用。但是,其他研究者的发现并未完全支持这些结论。在大鼠中,十二指肠和空肠葡萄糖输注具有相似的风味偏爱,而回肠输注无效。然而,在所有三个部位的输注都会增加血糖水平(Ackroff等,2010)。此外,在大鼠中进行门静脉葡萄糖输注并没有限制对风味糖精溶液的偏好,在小鼠中腹膜内输注葡萄糖也没有条件(Ackroff等,2010; Zukerman等,2013b)。因此,循环葡萄糖本身的升高不足以进行风味调节。然而,门静脉葡萄糖输注调节了对风味食物的偏爱(Tordoff and Friedman,1986),这表明当与吸收前的营养刺激结合时门静脉葡萄糖是一种有效的调节刺激。与这种解释一致,门静脉葡萄糖输注条件决定了风味葡萄糖的喜好,而不是风味糖精溶液的喜好(Gowans,1992; Ackroff等,2010)。这些结果不支持口服葡萄糖增强在口服后糖增强中的首要作用,而是表明,门户增强了肠道葡萄糖增强的增强作用。任等人。 (2010)报道IG葡萄糖输注增加纹状体多巴胺释放。因此,由葡萄糖产生的增强的风味调理可由于葡萄糖的吸收前和吸收后促进比MDG的吸收前更大的多巴胺反应而导致。不可代谢的MDG的调节作用也可能受到其在肠道细胞中的积累的限制:与葡萄糖不同,MDG不会通过GLUT2主动转运出细胞。与这种可能性一致的是,随着IG注入糖浓度的增加,MDG条件偏好降低,而葡萄糖条件偏好升高(Zukerman et al。,2013b)。张等。 (2018)假设门脉葡萄糖代谢产生触发纹状体多巴胺释放的信号。可能是这种情况,但应注意的是,肝门区域包含葡萄糖传感器,包括SGLT3,可以检测葡萄糖而不依赖于其代谢(Mithieux,2014年)。 Portal MDG输注不会刺激多巴胺释放,因此该反应不包括SGLT3。 GLUT2葡萄糖转运蛋白也参与门脉葡萄糖感测,这可能是葡萄糖代谢增加的继发因素,但不能排除GLUT2作为葡萄糖传感器的直接作用(Thorens,2015)。因此,仍有待确定纹状体多巴胺的门静脉葡萄糖刺激是否继葡萄糖代谢之后。周围的葡萄糖和MDG产生的增强信号如何到达大脑尚不确定。张等。 (2018)消除了肠道循环因子,并暗示肝门脑神经通路。但是他们没有考虑有关通过腹部迷走神经切断术,选择性传入迷走神经切断术或辣椒素治疗破坏神经传入的报道并没有阻止葡萄糖调节的风味偏好(Lucas和Sclafani,1996; Sclafani和Lucas,1996; Sclafani等人,2003; Zukerman等人,2011)。另外,迷走神经切断术不能预防

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号